38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Attentional control in the aging brain: insights from an fMRI study of the stroop task.

      Brain and Cognition
      Aged, Attention, Brain, pathology, Female, Humans, Magnetic Resonance Imaging, Male, Middle Aged, Parietal Lobe, Prefrontal Cortex, Psychological Tests, Regression Analysis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Several recent studies of aging and cognition have attributed decreases in the efficiency of working memory processes to possible declines in attentional control, the mechanism(s) by which the brain attempts to limit its processing to that of task-relevant information. Here we used fMRI measures of neural activity during performance of the color-word Stroop task to compare the neural substrates of attentional control in younger (ages: 21-27 years old) and older participants (ages: 60-75 years old) during conditions of both increased competition (incongruent and congruent neutral) and increased conflict (incongruent and congruent neutral). We found evidence of age-related decreases in the responsiveness of structures thought to support attentional control (e.g., dorsolateral prefrontal and parietal cortices), suggesting possible impairments in the implementation of attentional control in older participants. Consistent with this notion, older participants exhibited more extensive activation of ventral visual processing regions (i.e., temporal cortex) and anterior inferior prefrontal cortices, reflecting a decreased ability to inhibit the processing of task-irrelevant information. Also, the anterior cingulate cortex, a region involved in evaluatory processes at the level of response (e.g., detecting potential for error), showed age-related increases in its sensitivity to the presence of competing color information. These findings are discussed in terms of newly emerging models of attentional control in the human brain.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Imaging Cognition II: An Empirical Review of 275 PET and fMRI Studies

          Positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) have been extensively used to explore the functional neuroanatomy of cognitive functions. Here we review 275 PET and fMRI studies of attention (sustained, selective, Stroop, orientation, divided), perception (object, face, space/motion, smell), imagery (object, space/motion), language (written/spoken word recognition, spoken/no spoken response), working memory (verbal/numeric, object, spatial, problem solving), semantic memory retrieval (categorization, generation), episodic memory encoding (verbal, object, spatial), episodic memory retrieval (verbal, nonverbal, success, effort, mode, context), priming (perceptual, conceptual), and procedural memory (conditioning, motor, and nonmotor skill learning). To identify consistent activation patterns associated with these cognitive operations, data from 412 contrasts were summarized at the level of cortical Brodmann's areas, insula, thalamus, medial-temporal lobe (including hippocampus), basal ganglia, and cerebellum. For perception and imagery, activation patterns included primary and secondary regions in the dorsal and ventral pathways. For attention and working memory, activations were usually found in prefrontal and parietal regions. For language and semantic memory retrieval, typical regions included left prefrontal and temporal regions. For episodic memory encoding, consistently activated regions included left prefrontal and medial temporal regions. For episodic memory retrieval, activation patterns included prefrontal, medial temporal, and posterior midline regions. For priming, deactivations in prefrontal (conceptual) or extrastriate (perceptual) regions were consistently seen. For procedural memory, activations were found in motor as well as in non-motor brain areas. Analysis of regional activations across cognitive domains suggested that several brain regions, including the cerebellum, are engaged by a variety of cognitive challenges. These observations are discussed in relation to functional specialization as well as functional integration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A common network of functional areas for attention and eye movements.

            Functional magnetic resonance imaging (fMRI) and surface-based representations of brain activity were used to compare the functional anatomy of two tasks, one involving covert shifts of attention to peripheral visual stimuli, the other involving both attentional and saccadic shifts to the same stimuli. Overlapping regional networks in parietal, frontal, and temporal lobes were active in both tasks. This anatomical overlap is consistent with the hypothesis that attentional and oculomotor processes are tightly integrated at the neural level.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Frontal lobes and human memory: insights from functional neuroimaging.

              The new functional neuroimaging techniques, PET and functional MRI (fMRI), offer sufficient experimental flexibility and spatial resolution to explore the functional neuroanatomical bases of different memory stages and processes. They have had a particular impact on our understanding of the role of the frontal cortex in memory processing. We review the insights that have been gained, and attempt a synthesis of the findings from functional imaging studies of working memory, encoding in episodic memory and retrieval from episodic memory. Though these different aspects of memory have usually been studied in isolation, we suggest that there is sufficient convergence with respect to frontal activations to make such a synthesis worthwhile. We concentrate in particular on three regions of the lateral frontal cortex--ventrolateral, dorsolateral and anterior--that are consistently activated in these studies, and attribute these activations to the updating/maintenance of information, the selection/manipulation/monitoring of that information, and the selection of processes/subgoals, respectively. We also acknowledge a number of empirical inconsistencies associated with this synthesis, and suggest possible reasons for these. More generally, we predict that the resolution of questions concerning the functional neuroanatomical subdivisions of the frontal cortex will ultimately depend on a fuller cognitive psychological fractionation of memory control processes, an enterprise that will be guided and tested by experimentation. We expect that the neuroimaging techniques will provide an important part of this enterprise.
                Bookmark

                Author and article information

                Journal
                12139955
                10.1006/brcg.2001.1501

                Chemistry
                Aged,Attention,Brain,pathology,Female,Humans,Magnetic Resonance Imaging,Male,Middle Aged,Parietal Lobe,Prefrontal Cortex,Psychological Tests,Regression Analysis

                Comments

                Comment on this article