29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid

      , , , , , , ,
      Carbon
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          PEGylated nanographene oxide for delivery of water-insoluble cancer drugs.

          It is known that many potent, often aromatic drugs are water insoluble, which has hampered their use for disease treatment. In this work, we functionalized nanographene oxide (NGO), a novel graphitic material, with branched polyethylene glycol (PEG) to obtain a biocompatible NGO-PEG conjugate stable in various biological solutions, and used them for attaching hydrophobic aromatic molecules including a camptothecin (CPT) analogue, SN38, noncovalently via pi-pi stacking. The resulting NGO-PEG-SN38 complex exhibited excellent water solubility while maintaining its high cancer cell killing potency similar to that of the free SN38 molecules in organic solvents. The efficacy of NGO-PEG-SN38 was far higher than that of irinotecan (CPT-11), a FDA-approved water soluble SN38 prodrug used for the treatment of colon cancer. Our results showed that graphene is a novel class of material promising for biological applications including future in vivo cancer treatment with various aromatic, low-solubility drugs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Chaotic Dirac billiard in graphene quantum dots

            We report on transport characteristics of quantum dot devices etched entirely in graphene. At large sizes, they behave as conventional single-electron transistors, exhibiting periodic Coulomb blockade peaks. For quantum dots smaller than 100 nm, the peaks become strongly non-periodic indicating a major contribution of quantum confinement. Random peak spacing and its statistics are well described by the theory of chaotic neutrino (Dirac) billiards. Short constrictions of only a few nm in width remain conductive and reveal a confinement gap of up to 0.5eV, which demonstrates the in-principle possibility of molecular-scale electronics based on graphene.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Large, solution-processable graphene quantum dots as light absorbers for photovoltaics.

              Graphenes have very attractive properties for photovoltaics. Their tunable bandgap and large optical absorptivity are desirable for efficient light harvesting. Their electronic levels and interfacing with other materials for charge transfer processes can both be tuned with well-developed carbon chemistry. Graphenes have also been shown to have very large charge mobilities, which could be useful for charge collection in solar cells. In addition, they consist of elements abundant on Earth and are environmentally friendly. However, these important properties have not been taken advantage of because graphenes that are large enough to be useful for photovoltaics have extremely poor solubility and have a strong tendency to aggregate into graphite. Here we present a novel solubilization strategy for large graphene nanostructures. It has enabled us to synthesize solution-processable, black graphene quantum dots with uniform size through solution chemistry, and we show that they can be used as sensitizers for solar cells.
                Bookmark

                Author and article information

                Journal
                Carbon
                Carbon
                Elsevier BV
                00086223
                October 2012
                October 2012
                : 50
                : 12
                : 4738-4743
                Article
                10.1016/j.carbon.2012.06.002
                1a2b7981-9107-4d38-9369-e6a5327b546c
                © 2012

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article