1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Crop-climate feedbacks boost US maize and soy yields

      , , , ,
      Environmental Research Letters
      IOP Publishing

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          US maize and soy production have increased rapidly since the mid-20th century. While global warming has raised temperatures in most regions over this time period, trends in extreme heat have been smaller over US croplands, reducing crop-damaging high temperatures and benefiting maize and soy yields. Here we show that agricultural intensification has created a crop-climate feedback in which increased crop production cools local climate, further raising crop yields. We find that maize and soy production trends have driven cooling effects approximately as large as greenhouse gas induced warming trends in extreme heat over the central US and substantially reduced them over the southern US, benefiting crops in all regions. This reduced warming has boosted maize and soy yields by 3.3 (2.7–3.9; 13.7%–20.0%) and 0.6 (0.4–0.7; 7.5%–13.7%) bu/ac/decade, respectively, between 1981 and 2019. Our results suggest that if maize and soy production growth were to stagnate, the ability of the crop-climate feedback to mask warming would fade, exposing US crops to more harmful heat extremes.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: not found
          • Article: not found

          The ERA5 Global Reanalysis

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Solutions for a cultivated planet.

            Increasing population and consumption are placing unprecedented demands on agriculture and natural resources. Today, approximately a billion people are chronically malnourished while our agricultural systems are concurrently degrading land, water, biodiversity and climate on a global scale. To meet the world's future food security and sustainability needs, food production must grow substantially while, at the same time, agriculture's environmental footprint must shrink dramatically. Here we analyse solutions to this dilemma, showing that tremendous progress could be made by halting agricultural expansion, closing 'yield gaps' on underperforming lands, increasing cropping efficiency, shifting diets and reducing waste. Together, these strategies could double food production while greatly reducing the environmental impacts of agriculture.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Agricultural intensification and ecosystem properties.

              Expansion and intensification of cultivation are among the predominant global changes of this century. Intensification of agriculture by use of high-yielding crop varieties, fertilization,irrigation, and pesticides has contributed substantially to the tremendous increases in food production over the past 50 years. Land conversion and intensification,however, also alter the biotic interactions and patterns of resource availability in ecosystems and can have serious local, regional, and global environmental consequences.The use of ecologically based management strategies can increase the sustainability of agricultural production while reducing off-site consequences.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Environmental Research Letters
                Environ. Res. Lett.
                IOP Publishing
                1748-9326
                January 26 2022
                February 01 2022
                January 26 2022
                February 01 2022
                : 17
                : 2
                : 024012
                Article
                10.1088/1748-9326/ac4aa0
                1a3db9a6-bf7f-49d1-a920-cfd2a6b64229
                © 2022

                http://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article