11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptome profiling of two contrasting ornamental cabbage ( Brassica oleracea var. acephala) lines provides insights into purple and white inner leaf pigmentation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Ornamental cabbage ( Brassica oleracea var. acephala) is an attractive landscape plant that remains colorful at low temperatures during winter. Its key feature is its inner leaf coloration, which can include red, pink, lavender, blue, violet and white. Some ornamental cabbages exhibit variation in leaf color pattern linked to leaf developmental stage. However, little is known about the molecular mechanism underlying changes in leaf pigmentation pattern between developmental stages.

          Results

          The transcriptomes of six ornamental cabbage leaf samples were obtained using Illumina sequencing technology. A total of 339.75 million high-quality clean reads were assembled into 46,744 transcripts and 46,744 unigenes. Furthermore, 12,771 genes differentially expressed across the different lines and stages were identified by pairwise comparison. We identified 74 and 13 unigenes as differentially expressed genes related to the anthocyanin biosynthetic pathway and chlorophyll metabolism, respectively. Among them, three unigenes ( BoC4H2, BoUGT9, and BoGST21) and six unigenes ( BoHEMA1, BoCRD1, BoPORC1, BoPORC2, BoCAO, and BoCLH1) were found as candidates for the genes encoding enzymes in the anthocyanin biosynthetic pathway and chlorophyll metabolism, respectively. In addition, two unigenes ( BoRAX3 and BoTRB1) as MYB candidates, two unigenes ( BoMUTE1, and BHLH168-like) as bHLH candidates were identified for purple pigmentation in ornamental cabbage.

          Conclusion

          Our results indicate that the purple inner leaves of purple ornamental cabbage result from a high level of anthocyanin biosynthesis, a high level of chlorophyll degradation and an extremely low level of chlorophyll biosynthesis, whereas the bicolor (purple/green) outer leaves are due to a moderate level of anthocyanin biosynthesis, a high level of chlorophyll degradation and a very low level of chlorophyll biosynthesis. In white ornamental cabbage, the white inner leaves are due to an extremely low level or absence of anthocyanin biosynthesis, a high level of chlorophyll degradation and a very low level of chlorophyll biosynthesis, whereas the bicolor (white/green) leaves are due to a high level of chlorophyll degradation and a low level of chlorophyll biosynthesis and absence of anthocyanin biosynthesis. These results provide insight into the molecular mechanisms underlying inner and bicolor leaf pigmentation in ornamental cabbage and offer a platform for assessing related ornamental species.

          Electronic supplementary material

          The online version of this article (10.1186/s12864-018-5199-3) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Recent advances on the regulation of anthocyanin synthesis in reproductive organs.

          Anthocyanins represent the major red, purple, violet and blue pigments in many flowers and fruits. They attract pollinators and seed dispersers and defend plants against abiotic and biotic stresses. Anthocyanins are produced by a specific branch of the flavonoid pathway, which is differently regulated in monocot and dicot species. In the monocot maize, the anthocyanin biosynthesis genes are activated as a single unit by a ternary complex of MYB-bHLH-WD40 transcription factors (MBW complex). In the dicot Arabidopsis, anthocyanin biosynthesis genes can be divided in two subgroups: early biosynthesis genes (EBGs) are activated by co-activator independent R2R3-MYB transcription factors, whereas late biosynthesis genes (LBGs) require an MBW complex. In addition to this, a complex regulatory network of positive and negative feedback mechanisms controlling anthocyanin synthesis in Arabidopsis has been described. Recent studies have broadened our understanding of the regulation of anthocyanin synthesis in flowers and fruits, indicating that a regulatory system based on the cooperation of MYB, bHLH and WD40 proteins that control floral and fruit pigmentation is common to many dicot species. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis.

            Comprehensive functional data on plant R2R3-MYB transcription factors is still scarce compared to the manifold of their occurrence. Here, we identified the Arabidopsis (Arabidopsis thaliana) R2R3-MYB transcription factor MYB12 as a flavonol-specific activator of flavonoid biosynthesis. Transient expression in Arabidopsis protoplasts revealed a high degree of functional similarity between MYB12 and the structurally closely related factor P from maize (Zea mays). Both displayed similar target gene specificity, and both activated target gene promoters only in the presence of a functional MYB recognition element. The genes encoding the flavonoid biosynthesis enzymes chalcone synthase, chalcone flavanone isomerase, flavanone 3-hydroxylase, and flavonol synthase were identified as target genes. Hence, our observations further add to the general notion of a close relationship between structure and function of R2R3-MYB factors. High-performance liquid chromatography analyses of myb12 mutant plants and MYB12 overexpression plants demonstrate a tight linkage between the expression level of functional MYB12 and the flavonol content of young seedlings. Quantitative real time reverse transcription-PCR using these mutant plants showed MYB12 to be a transcriptional regulator of CHALCONE SYNTHASE and FLAVONOL SYNTHASE in planta, the gene products of which are indispensable for the biosynthesis of flavonols.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae

              Background The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the gene determining fruit flesh and foliage anthocyanin has been termed MYB10. In order to further understand tissue-specific anthocyanin regulation we have isolated orthologous MYB genes from all the commercially important rosaceous species. Results We use gene specific primers to show that the three MYB activators of apple anthocyanin (MYB10/MYB1/MYBA) are likely alleles of each other. MYB transcription factors, with high sequence identity to the apple gene were isolated from across the rosaceous family (e.g. apples, pears, plums, cherries, peaches, raspberries, rose, strawberry). Key identifying amino acid residues were found in both the DNA-binding and C-terminal domains of these MYBs. The expression of these MYB10 genes correlates with fruit and flower anthocyanin levels. Their function was tested in tobacco and strawberry. In tobacco, these MYBs were shown to induce the anthocyanin pathway when co-expressed with bHLHs, while over-expression of strawberry and apple genes in the crop of origin elevates anthocyanins. Conclusions This family-wide study of rosaceous R2R3 MYBs provides insight into the evolution of this plant trait. It has implications for the development of new coloured fruit and flowers, as well as aiding the understanding of temporal-spatial colour change.
                Bookmark

                Author and article information

                Contributors
                cooljsw@hanmail.net
                rahimgepb@scnu.ac.kr
                1175002@s.scnu.ac.kr
                jipark@sunchon.ac.kr
                jgkang@sunchon.ac.kr
                +82-61-750-3249 , nis@sunchon.ac.kr
                Journal
                BMC Genomics
                BMC Genomics
                BMC Genomics
                BioMed Central (London )
                1471-2164
                6 November 2018
                6 November 2018
                2018
                : 19
                : 797
                Affiliations
                [1 ]ISNI 0000 0000 8543 5345, GRID grid.412871.9, Department of Horticulture, , Sunchon National University, ; Suncheon, 57922 Republic of Korea
                [2 ]ISNI 0000 0004 0635 1987, GRID grid.462795.b, Department of Genetics and Plant Breeding, , Sher-e-Bangla Agricultural University, ; Dhaka-1207, Bangladesh
                Article
                5199
                10.1186/s12864-018-5199-3
                6219265
                30400854
                1a6fbf07-6bfb-4bab-aee7-37324fc3c624
                © The Author(s). 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 11 June 2018
                : 23 October 2018
                Funding
                Funded by: The Golden Seed Project (Center for Horticultural Seed Development, Ministry of Agriculture, Food and Rural affairs in the Republic of Korea (MAFRA))
                Award ID: Grant no. 213007-05-2-CG100
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2018

                Genetics
                transcriptome,ornamental cabbage,anthocyanin biosynthesis,chlorophyll biosynthesis,leaf color

                Comments

                Comment on this article