18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tropane Alkaloids: Chemistry, Pharmacology, Biosynthesis and Production

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tropane alkaloids (TA) are valuable secondary plant metabolites which are mostly found in high concentrations in the Solanaceae and Erythroxylaceae families. The TAs, which are characterized by their unique bicyclic tropane ring system, can be divided into three major groups: hyoscyamine and scopolamine, cocaine and calystegines. Although all TAs have the same basic structure, they differ immensely in their biological, chemical and pharmacological properties. Scopolamine, also known as hyoscine, has the largest legitimate market as a pharmacological agent due to its treatment of nausea, vomiting, motion sickness, as well as smooth muscle spasms while cocaine is the 2nd most frequently consumed illicit drug globally. This review provides a comprehensive overview of TAs, highlighting their structural diversity, use in pharmaceutical therapy from both historical and modern perspectives, natural biosynthesis in planta and emerging production possibilities using tissue culture and microbial biosynthesis of these compounds.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Article: not found

          Acyltransferases in plants: a good time to be BAHD.

          Acylation is a common and biochemically significant modification of plant secondary metabolites. Plant BAHD acyltransferases constitute a large family of acyl CoA-utilizing enzymes whose products include small volatile esters, modified anthocyanins, as well as constitutive defense compounds and phytoalexins. The catalytic versatility of BAHD enzymes makes it very difficult to make functional predictions from primary sequence alone. Recent advances in genome sequencing and the availability of the first crystal structure of a BAHD member are, however, providing insights into the evolution and function of these acyltransferases within the plant kingdom.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin.

            A large body of evidence supports the hypothesis that mesolimbic dopamine (DA) mediates, in animal models, the reinforcing effects of central nervous system stimulants such as cocaine and amphetamine. The role DA plays in mediating amphetamine-type subjective effects of stimulants in humans remains to be established. Both amphetamine and cocaine increase norepinephrine (NE) via stimulation of release and inhibition of reuptake, respectively. If increases in NE mediate amphetamine-type subjective effects of stimulants in humans, then one would predict that stimulant medications that produce amphetamine-type subjective effects in humans should share the ability to increase NE. To test this hypothesis, we determined, using in vitro methods, the neurochemical mechanism of action of amphetamine, 3,4-methylenedioxymethamphetamine (MDMA), (+)-methamphetamine, ephedrine, phentermine, and aminorex. As expected, their rank order of potency for DA release was similar to their rank order of potency in published self-administration studies. Interestingly, the results demonstrated that the most potent effect of these stimulants is to release NE. Importantly, the oral dose of these stimulants, which produce amphetamine-type subjective effects in humans, correlated with the their potency in releasing NE, not DA, and did not decrease plasma prolactin, an effect mediated by DA release. These results suggest that NE may contribute to the amphetamine-type subjective effects of stimulants in humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alkaloid biosynthesis: metabolism and trafficking.

              Alkaloids represent a highly diverse group of compounds that are related only by the occurrence of a nitrogen atom in a heterocyclic ring. Plants are estimated to produce approximately 12,000 different alkaloids, which can be organized into groups according to their carbon skeletal structures. Alkaloid biosynthesis in plants involves many catalytic steps, catalyzed by enzymes that belong to a wide range of protein families. The characterization of novel alkaloid biosynthetic enzymes in terms of structural biochemistry, molecular and cell biology, and biotechnological applications has been the focus of research over the past several years. The application of genomics to the alkaloid field has accelerated the discovery of cDNAs encoding previously elusive biosynthetic enzymes. Other technologies, such as large-scale gene expression analyses and metabolic engineering approaches with transgenic plants, have provided new insights into the regulatory architecture of alkaloid metabolism.
                Bookmark

                Author and article information

                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                22 February 2019
                February 2019
                : 24
                : 4
                : 796
                Affiliations
                Technical Biochemistry, Department of Biochemical and Chemical Engineering, Technical University Dortmund, D-44227 Dortmund, Germany; Laura.Kohnen@ 123456tu-dortmund.de
                Author notes
                [* ]Correspondence: Oliver.Kayser@ 123456tu-dortmund.de ; Tel.: +49-231-755-7487
                Author information
                https://orcid.org/0000-0001-6131-2495
                Article
                molecules-24-00796
                10.3390/molecules24040796
                6412926
                30813289
                1a70a720-a30c-44b4-8c09-c61cb9eadd11
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 15 January 2019
                : 18 February 2019
                Categories
                Review

                tropane alkaloids,scopolamine,cocaine,calystegine,chemistry,pharmacology,biosynthesis,biotechnological production

                Comments

                Comment on this article