17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Large-scale genome-wide association study in a Japanese population identifies novel susceptibility loci across different diseases

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
      Nature Genetics
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic analyses of diverse populations improves discovery for complex traits

          Genome-wide association studies (GWAS) have laid the foundation for investigations into the biology of complex traits, drug development and clinical guidelines. However, the majority of discovery efforts are based on data from populations of European ancestry1-3. In light of the differential genetic architecture that is known to exist between populations, bias in representation can exacerbate existing disease and healthcare disparities. Critical variants may be missed if they have a low frequency or are completely absent in European populations, especially as the field shifts its attention towards rare variants, which are more likely to be population-specific4-10. Additionally, effect sizes and their derived risk prediction scores derived in one population may not accurately extrapolate to other populations11,12. Here we demonstrate the value of diverse, multi-ethnic participants in large-scale genomic studies. The Population Architecture using Genomics and Epidemiology (PAGE) study conducted a GWAS of 26 clinical and behavioural phenotypes in 49,839 non-European individuals. Using strategies tailored for analysis of multi-ethnic and admixed populations, we describe a framework for analysing diverse populations, identify 27 novel loci and 38 secondary signals at known loci, as well as replicate 1,444 GWAS catalogue associations across these traits. Our data show evidence of effect-size heterogeneity across ancestries for published GWAS associations, substantial benefits for fine-mapping using diverse cohorts and insights into clinical implications. In the United States-where minority populations have a disproportionately higher burden of chronic conditions13-the lack of representation of diverse populations in genetic research will result in inequitable access to precision medicine for those with the highest burden of disease. We strongly advocate for continued, large genome-wide efforts in diverse populations to maximize genetic discovery and reduce health disparities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Genetics of Transcription Factor DNA Binding Variation.

            Most complex trait-associated variants are located in non-coding regulatory regions of the genome, where they have been shown to disrupt transcription factor (TF)-DNA binding motifs. Variable TF-DNA interactions are therefore increasingly considered as key drivers of phenotypic variation. However, recent genome-wide studies revealed that the majority of variable TF-DNA binding events are not driven by sequence alterations in the motif of the studied TF. This observation implies that the molecular mechanisms underlying TF-DNA binding variation and, by extrapolation, inter-individual phenotypic variation are more complex than originally anticipated. Here, we summarize the findings that led to this important paradigm shift and review proposed mechanisms for local, proximal, or distal genetic variation-driven variable TF-DNA binding. In addition, we discuss the biomedical implications of these findings for our ability to dissect the molecular role(s) of non-coding genetic variants in complex traits, including disease susceptibility.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1.

              The zinc-finger transcription factor GATA-1 (previously known as GF-1, NF-E1 or Eryf 1 binds to GATA consensus elements in regulatory regions of the alpha- and beta-globin gene clusters and other erythroid cell-specific genes. Analysis of the effects of mutations in GATA-binding sites in cell culture and in binding assays in vitro, as well as transactivation studies with GATA-1 expression vectors in heterologous cells, have provided indirect evidence that this factor is involved in the activation of globin and other genes during erythroid cell maturation. GATA-1 is also expressed in megakaryocytes and mast cells, but not in other blood cell lineages or in non-haemopoietic cells. To investigate the role of this factor in haematopoiesis in vivo, we disrupted the X-linked GATA-1 gene by homologous recombination in a male (XY) murine embryonic stem cell line and tested the GATA-1-deficient cells for their ability to contribute to different tissues in chimaeric mice. The mutant embryonic stem cells contributed to all non-haemopoietic tissues tested and to a white blood cell fraction, but failed to give rise to mature red blood cells. This demonstrates that GATA-1 is required for the normal differentiation of erythroid cells, and that other GATA-binding proteins cannot compensate for its absence.
                Bookmark

                Author and article information

                Journal
                Nature Genetics
                Nat Genet
                Springer Science and Business Media LLC
                1061-4036
                1546-1718
                June 8 2020
                Article
                10.1038/s41588-020-0640-3
                32514122
                1a80268d-481e-40b6-b5ba-df087f9c21b0
                © 2020

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article