10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Fibroblast growth factor-23 abolishes 1,25-dihydroxyvitamin D₃-enhanced duodenal calcium transport in male mice.

      American Journal of Physiology - Endocrinology and Metabolism
      Animals, Calbindins, Calcitriol, metabolism, Calcium Channels, genetics, Calcium, Dietary, Cell Polarity, Duodenum, cytology, drug effects, Fibroblast Growth Factors, Gene Expression Regulation, In Vitro Techniques, Intestinal Absorption, Intestinal Mucosa, MAP Kinase Signaling System, Male, Mice, Mice, Inbred ICR, Organ Specificity, Protein Isoforms, Protein Kinase Inhibitors, pharmacology, RNA, Messenger, Receptors, Fibroblast Growth Factor, antagonists & inhibitors, Recombinant Proteins, S100 Calcium Binding Protein G, TRPV Cation Channels

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite being widely recognized as the important bone-derived phosphaturic hormone, whether fibroblast growth factor (FGF)-23 modulated intestinal calcium absorption remained elusive. Since FGF-23 could reduce the circulating level of 1,25-dihydroxyvitamin D₃ [1,25(OH)₂D₃], FGF-23 probably compromised the 1,25(OH)₂D₃-induced intestinal calcium absorption. FGF-23 may also exert an inhibitory action directly through FGF receptors (FGFR) in the intestinal cells. Herein, we demonstrated by Ussing chamber technique that male mice administered 1 μg/kg 1,25(OH)₂D₃ sc daily for 3 days exhibited increased duodenal calcium absorption, which was abolished by concurrent intravenous injection of recombinant mouse FGF-23. This FGF-23 administration had no effect on the background epithelial electrical properties, i.e., short-circuit current, transepithelial potential difference, and resistance. Immunohistochemical evidence of protein expressions of FGFR isoforms 1-4 in mouse duodenal epithelial cells suggested a possible direct effect of FGF-23 on the intestine. This was supported by the findings that FGF-23 directly added to the serosal compartment of the Ussing chamber and completely abolished the 1,25(OH)₂D₃-induced calcium absorption in the duodenal tissues taken from the 1,25(OH)₂D₃-treated mice. However, direct FGF-23 exposure did not decrease the duodenal calcium absorption without 1,25(OH)₂D₃ preinjection. The observed FGF-23 action was mediated by MAPK/ERK, p38 MAPK, and PKC. Quantitative real-time PCR further showed that FGF-23 diminished the 1,25(OH)₂D₃-induced upregulation of TRPV5, TRPV6, and calbindin-D(9k), but not PMCA(1b) expression in the duodenal epithelial cells. In conclusion, besides being a phosphatonin, FGF-23 was shown to be a novel calcium-regulating hormone that acted directly on the mouse intestine, thereby compromising the 1,25(OH)₂D₃-induced calcium absorption.

          Related collections

          Author and article information

          Comments

          Comment on this article