40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Medicinal Properties of Cannabinoids, Terpenes, and Flavonoids in Cannabis, and Benefits in Migraine, Headache, and Pain: An Update on Current Evidence and Cannabis Science

      1
      Headache: The Journal of Head and Face Pain
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Comprehensive literature reviews of historical perspectives and evidence supporting cannabis/cannabinoids in the treatment of pain, including migraine and headache, with associated neurobiological mechanisms of pain modulation have been well described. Most of the existing literature reports on the cannabinoids Δ9 -tetrahydrocannabinol (THC) and cannabidiol (CBD), or cannabis in general. There are many cannabis strains that vary widely in the composition of cannabinoids, terpenes, flavonoids, and other compounds. These components work synergistically to produce wide variations in benefits, side effects, and strain characteristics. Knowledge of the individual medicinal properties of the cannabinoids, terpenes, and flavonoids is necessary to cross-breed strains to obtain optimal standardized synergistic compositions. This will enable targeting individual symptoms and/or diseases, including migraine, headache, and pain.

          Related collections

          Most cited references705

          • Record: found
          • Abstract: found
          • Article: not found

          Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects.

          Tetrahydrocannabinol (THC) has been the primary focus of cannabis research since 1964, when Raphael Mechoulam isolated and synthesized it. More recently, the synergistic contributions of cannabidiol to cannabis pharmacology and analgesia have been scientifically demonstrated. Other phytocannabinoids, including tetrahydrocannabivarin, cannabigerol and cannabichromene, exert additional effects of therapeutic interest. Innovative conventional plant breeding has yielded cannabis chemotypes expressing high titres of each component for future study. This review will explore another echelon of phytotherapeutic agents, the cannabis terpenoids: limonene, myrcene, α-pinene, linalool, β-caryophyllene, caryophyllene oxide, nerolidol and phytol. Terpenoids share a precursor with phytocannabinoids, and are all flavour and fragrance components common to human diets that have been designated Generally Recognized as Safe by the US Food and Drug Administration and other regulatory agencies. Terpenoids are quite potent, and affect animal and even human behaviour when inhaled from ambient air at serum levels in the single digits ng·mL(-1) . They display unique therapeutic effects that may contribute meaningfully to the entourage effects of cannabis-based medicinal extracts. Particular focus will be placed on phytocannabinoid-terpenoid interactions that could produce synergy with respect to treatment of pain, inflammation, depression, anxiety, addiction, epilepsy, cancer, fungal and bacterial infections (including methicillin-resistant Staphylococcus aureus). Scientific evidence is presented for non-cannabinoid plant components as putative antidotes to intoxicating effects of THC that could increase its therapeutic index. Methods for investigating entourage effects in future experiments will be proposed. Phytocannabinoid-terpenoid synergy, if proven, increases the likelihood that an extensive pipeline of new therapeutic products is possible from this venerable plant. http://dx.doi.org/10.1111/bph.2011.163.issue-7. © 2011 The Author. British Journal of Pharmacology © 2011 The British Pharmacological Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The orphan receptor GPR55 is a novel cannabinoid receptor.

            The endocannabinoid system functions through two well characterized receptor systems, the CB1 and CB2 receptors. Work by a number of groups in recent years has provided evidence that the system is more complicated and additional receptor types should exist to explain ligand activity in a number of physiological processes. Cells transfected with the human cDNA for GPR55 were tested for their ability to bind and to mediate GTPgammaS binding by cannabinoid ligands. Using an antibody and peptide blocking approach, the nature of the G-protein coupling was determined and further demonstrated by measuring activity of downstream signalling pathways. We demonstrate that GPR55 binds to and is activated by the cannabinoid ligand CP55940. In addition endocannabinoids including anandamide and virodhamine activate GTPgammaS binding via GPR55 with nM potencies. Ligands such as cannabidiol and abnormal cannabidiol which exhibit no CB1 or CB2 activity and are believed to function at a novel cannabinoid receptor, also showed activity at GPR55. GPR55 couples to Galpha13 and can mediate activation of rhoA, cdc42 and rac1. These data suggest that GPR55 is a novel cannabinoid receptor, and its ligand profile with respect to CB1 and CB2 described here will permit delineation of its physiological function(s).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lost productive time and cost due to common pain conditions in the US workforce.

              Common pain conditions appear to have an adverse effect on work, but no comprehensive estimates exist on the amount of productive time lost in the US workforce due to pain. To measure lost productive time (absence and reduced performance due to common pain conditions) during a 2-week period. Cross-sectional study using survey data from the American Productivity Audit (a telephone survey that uses the Work and Health Interview) of working adults between August 1, 2001, and July 30, 2002. Random sample of 28 902 working adults in the United States. Lost productive time due to common pain conditions (arthritis, back, headache, and other musculoskeletal) expressed in hours per worker per week and calculated in US dollars. Thirteen percent of the total workforce experienced a loss in productive time during a 2-week period due to a common pain condition. Headache was the most common (5.4%) pain condition resulting in lost productive time. It was followed by back pain (3.2%), arthritis pain (2.0%), and other musculoskeletal pain (2.0%). Workers who experienced lost productive time from a pain condition lost a mean (SE) of 4.6 (0.09) h/wk. Workers who had a headache had a mean (SE) loss in productive time of 3.5 (0.1) h/wk. Workers who reported arthritis or back pain had mean (SE) lost productive times of 5.2 (0.25) h/wk. Other common pain conditions resulted in a mean (SE) loss in productive time of 5.5 (0.22) h/wk. Lost productive time from common pain conditions among active workers costs an estimated 61.2 billion dollars per year. The majority (76.6%) of the lost productive time was explained by reduced performance while at work and not work absence. Pain is an inordinately common and disabling condition in the US workforce. Most of the pain-related lost productive time occurs while employees are at work and is in the form of reduced performance.
                Bookmark

                Author and article information

                Journal
                Headache: The Journal of Head and Face Pain
                Headache: The Journal of Head and Face Pain
                Wiley
                00178748
                July 2018
                July 2018
                August 27 2018
                : 58
                : 7
                : 1139-1186
                Affiliations
                [1 ]Department of Neurology, Center for Neurological Restoration - Headache and Chronic Pain Medicine; Cleveland Clinic Neurological Institute; Cleveland OH 44195 USA
                Article
                10.1111/head.13345
                30152161
                1a8a3979-a3bd-492d-9a53-df6aa212a373
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article