Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Increased hospitalizations for decompensated heart failure and acute myocardial infarction during mild winters: A seven-year experience in the public health system of the largest city in Latin America

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      BackgroundIn high-income temperate countries, the number of hospitalizations for heart failure (HF) and acute myocardial infarction (AMI) increases during the winter. This finding has not been fully investigated in low- and middle-income countries with tropical and subtropical climates. We investigated the seasonality of hospitalizations for HF and AMI in Sao Paulo (Brazil), the largest city in Latin America.MethodsThis was a retrospective study using data for 76,474 hospitalizations for HF and 54,561 hospitalizations for AMI obtained from public hospitals, from January 2008 to April 2015. The average number of hospitalizations for HF and AMI per month during winter was compared to each of the other seasons. The autoregressive integrated moving average (ARIMA) model was used to test the association between temperature and hospitalization rates.FindingsThe highest average number of hospital admissions for HF and AMI per month occurred during winter, with an increase of up to 30% for HF and 16% for AMI when compared to summer, the season with lowest figures for both diseases (respectively, HF: 996 vs. 767 per month, p<0.001; and AMI: 678 vs. 586 per month, p<0.001). Monthly average temperatures were moderately lower during winter than other seasons and they were not associated with hospitalizations for HF and AMI.InterpretationThe winter season was associated with a greater number of hospitalizations for both HF and AMI. This increase was not associated with seasonal oscillations in temperature, which were modest. Our study suggests that the prevention of cardiovascular disease decompensation should be emphasized during winter even in low to middle-income countries with tropical and subtropical climates.

      Related collections

      Most cited references 27

      • Record: found
      • Abstract: found
      • Article: not found

      Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010.

      Reliable and timely information on the leading causes of death in populations, and how these are changing, is a crucial input into health policy debates. In the Global Burden of Diseases, Injuries, and Risk Factors Study 2010 (GBD 2010), we aimed to estimate annual deaths for the world and 21 regions between 1980 and 2010 for 235 causes, with uncertainty intervals (UIs), separately by age and sex. We attempted to identify all available data on causes of death for 187 countries from 1980 to 2010 from vital registration, verbal autopsy, mortality surveillance, censuses, surveys, hospitals, police records, and mortuaries. We assessed data quality for completeness, diagnostic accuracy, missing data, stochastic variations, and probable causes of death. We applied six different modelling strategies to estimate cause-specific mortality trends depending on the strength of the data. For 133 causes and three special aggregates we used the Cause of Death Ensemble model (CODEm) approach, which uses four families of statistical models testing a large set of different models using different permutations of covariates. Model ensembles were developed from these component models. We assessed model performance with rigorous out-of-sample testing of prediction error and the validity of 95% UIs. For 13 causes with low observed numbers of deaths, we developed negative binomial models with plausible covariates. For 27 causes for which death is rare, we modelled the higher level cause in the cause hierarchy of the GBD 2010 and then allocated deaths across component causes proportionately, estimated from all available data in the database. For selected causes (African trypanosomiasis, congenital syphilis, whooping cough, measles, typhoid and parathyroid, leishmaniasis, acute hepatitis E, and HIV/AIDS), we used natural history models based on information on incidence, prevalence, and case-fatality. We separately estimated cause fractions by aetiology for diarrhoea, lower respiratory infections, and meningitis, as well as disaggregations by subcause for chronic kidney disease, maternal disorders, cirrhosis, and liver cancer. For deaths due to collective violence and natural disasters, we used mortality shock regressions. For every cause, we estimated 95% UIs that captured both parameter estimation uncertainty and uncertainty due to model specification where CODEm was used. We constrained cause-specific fractions within every age-sex group to sum to total mortality based on draws from the uncertainty distributions. In 2010, there were 52·8 million deaths globally. At the most aggregate level, communicable, maternal, neonatal, and nutritional causes were 24·9% of deaths worldwide in 2010, down from 15·9 million (34·1%) of 46·5 million in 1990. This decrease was largely due to decreases in mortality from diarrhoeal disease (from 2·5 to 1·4 million), lower respiratory infections (from 3·4 to 2·8 million), neonatal disorders (from 3·1 to 2·2 million), measles (from 0·63 to 0·13 million), and tetanus (from 0·27 to 0·06 million). Deaths from HIV/AIDS increased from 0·30 million in 1990 to 1·5 million in 2010, reaching a peak of 1·7 million in 2006. Malaria mortality also rose by an estimated 19·9% since 1990 to 1·17 million deaths in 2010. Tuberculosis killed 1·2 million people in 2010. Deaths from non-communicable diseases rose by just under 8 million between 1990 and 2010, accounting for two of every three deaths (34·5 million) worldwide by 2010. 8 million people died from cancer in 2010, 38% more than two decades ago; of these, 1·5 million (19%) were from trachea, bronchus, and lung cancer. Ischaemic heart disease and stroke collectively killed 12·9 million people in 2010, or one in four deaths worldwide, compared with one in five in 1990; 1·3 million deaths were due to diabetes, twice as many as in 1990. The fraction of global deaths due to injuries (5·1 million deaths) was marginally higher in 2010 (9·6%) compared with two decades earlier (8·8%). This was driven by a 46% rise in deaths worldwide due to road traffic accidents (1·3 million in 2010) and a rise in deaths from falls. Ischaemic heart disease, stroke, chronic obstructive pulmonary disease (COPD), lower respiratory infections, lung cancer, and HIV/AIDS were the leading causes of death in 2010. Ischaemic heart disease, lower respiratory infections, stroke, diarrhoeal disease, malaria, and HIV/AIDS were the leading causes of years of life lost due to premature mortality (YLLs) in 2010, similar to what was estimated for 1990, except for HIV/AIDS and preterm birth complications. YLLs from lower respiratory infections and diarrhoea decreased by 45-54% since 1990; ischaemic heart disease and stroke YLLs increased by 17-28%. Regional variations in leading causes of death were substantial. Communicable, maternal, neonatal, and nutritional causes still accounted for 76% of premature mortality in sub-Saharan Africa in 2010. Age standardised death rates from some key disorders rose (HIV/AIDS, Alzheimer's disease, diabetes mellitus, and chronic kidney disease in particular), but for most diseases, death rates fell in the past two decades; including major vascular diseases, COPD, most forms of cancer, liver cirrhosis, and maternal disorders. For other conditions, notably malaria, prostate cancer, and injuries, little change was noted. Population growth, increased average age of the world's population, and largely decreasing age-specific, sex-specific, and cause-specific death rates combine to drive a broad shift from communicable, maternal, neonatal, and nutritional causes towards non-communicable diseases. Nevertheless, communicable, maternal, neonatal, and nutritional causes remain the dominant causes of YLLs in sub-Saharan Africa. Overlaid on this general pattern of the epidemiological transition, marked regional variation exists in many causes, such as interpersonal violence, suicide, liver cancer, diabetes, cirrhosis, Chagas disease, African trypanosomiasis, melanoma, and others. Regional heterogeneity highlights the importance of sound epidemiological assessments of the causes of death on a regular basis. Bill & Melinda Gates Foundation. Copyright © 2012 Elsevier Ltd. All rights reserved.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Mortality risk attributable to high and low ambient temperature: a multicountry observational study

        Summary Background Although studies have provided estimates of premature deaths attributable to either heat or cold in selected countries, none has so far offered a systematic assessment across the whole temperature range in populations exposed to different climates. We aimed to quantify the total mortality burden attributable to non-optimum ambient temperature, and the relative contributions from heat and cold and from moderate and extreme temperatures. Methods We collected data for 384 locations in Australia, Brazil, Canada, China, Italy, Japan, South Korea, Spain, Sweden, Taiwan, Thailand, UK, and USA. We fitted a standard time-series Poisson model for each location, controlling for trends and day of the week. We estimated temperature–mortality associations with a distributed lag non-linear model with 21 days of lag, and then pooled them in a multivariate metaregression that included country indicators and temperature average and range. We calculated attributable deaths for heat and cold, defined as temperatures above and below the optimum temperature, which corresponded to the point of minimum mortality, and for moderate and extreme temperatures, defined using cutoffs at the 2·5th and 97·5th temperature percentiles. Findings We analysed 74 225 200 deaths in various periods between 1985 and 2012. In total, 7·71% (95% empirical CI 7·43–7·91) of mortality was attributable to non-optimum temperature in the selected countries within the study period, with substantial differences between countries, ranging from 3·37% (3·06 to 3·63) in Thailand to 11·00% (9·29 to 12·47) in China. The temperature percentile of minimum mortality varied from roughly the 60th percentile in tropical areas to about the 80–90th percentile in temperate regions. More temperature-attributable deaths were caused by cold (7·29%, 7·02–7·49) than by heat (0·42%, 0·39–0·44). Extreme cold and hot temperatures were responsible for 0·86% (0·84–0·87) of total mortality. Interpretation Most of the temperature-related mortality burden was attributable to the contribution of cold. The effect of days of extreme temperature was substantially less than that attributable to milder but non-optimum weather. This evidence has important implications for the planning of public-health interventions to minimise the health consequences of adverse temperatures, and for predictions of future effect in climate-change scenarios. Funding UK Medical Research Council.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Global association of air pollution and heart failure: a systematic review and meta-analysis

          Summary Background Acute exposure to air pollution has been linked to myocardial infarction, but its effect on heart failure is uncertain. We did a systematic review and meta-analysis to assess the association between air pollution and acute decompensated heart failure including hospitalisation and heart failure mortality. Methods Five databases were searched for studies investigating the association between daily increases in gaseous (carbon monoxide, sulphur dioxide, nitrogen dioxide, ozone) and particulate (diameter <2·5 μm [PM2·5] or <10 μm [PM10]) air pollutants, and heart failure hospitalisations or heart failure mortality. We used a random-effects model to derive overall risk estimates per pollutant. Findings Of 1146 identified articles, 195 were reviewed in-depth with 35 satisfying inclusion criteria. Heart failure hospitalisation or death was associated with increases in carbon monoxide (3·52% per 1 part per million; 95% CI 2·52–4·54), sulphur dioxide (2·36% per 10 parts per billion; 1·35–3·38), and nitrogen dioxide (1·70% per 10 parts per billion; 1·25–2·16), but not ozone (0·46% per 10 parts per billion; −0·10 to 1·02) concentrations. Increases in particulate matter concentration were associated with heart failure hospitalisation or death (PM2·5 2·12% per 10 μg/m3, 95% CI 1·42–2·82; PM10 1·63% per 10 μg/m3, 95% CI 1·20–2·07). Strongest associations were seen on the day of exposure, with more persistent effects for PM2·5. In the USA, we estimate that a mean reduction in PM2·5 of 3·9 μg/m3 would prevent 7978 heart failure hospitalisations and save a third of a billion US dollars a year. Interpretation Air pollution has a close temporal association with heart failure hospitalisation and heart failure mortality. Although more studies from developing nations are required, air pollution is a pervasive public health issue with major cardiovascular and health economic consequences, and it should remain a key target for global health policy. Funding British Heart Foundation.
            Bookmark

            Author and article information

            Affiliations
            [1 ] Hospital Israelita Albert Einstein, Sao Paulo, Sao Paulo, Brazil
            [2 ] Instituto de Estudos Avançados da Universidade de São Paulo, Sao Paulo, Sao Paulo, Brazil
            [3 ] Robert F. Wagner School of Public Service, New York University, New York, New York, United States of America
            Instituto de Cardiologia J F Cabral, ARGENTINA
            Author notes

            Competing Interests: The authors have declared that no competing interests exist.

            Contributors
            Role: Conceptualization, Role: Data curation, Role: Formal analysis, Role: Investigation, Role: Methodology, Role: Writing – original draft, Role: Writing – review & editing
            Role: Conceptualization, Role: Data curation, Role: Formal analysis, Role: Methodology, Role: Writing – original draft, Role: Writing – review & editing
            Role: Conceptualization, Role: Data curation, Role: Investigation, Role: Writing – original draft, Role: Writing – review & editing
            Role: Conceptualization, Role: Formal analysis, Role: Investigation, Role: Writing – original draft, Role: Writing – review & editing
            Role: Data curation, Role: Formal analysis, Role: Supervision, Role: Writing – review & editing
            Role: Data curation, Role: Formal analysis, Role: Investigation, Role: Project administration, Role: Writing – review & editing
            Role: Conceptualization, Role: Data curation, Role: Investigation, Role: Methodology, Role: Writing – review & editing
            ORCID: http://orcid.org/0000-0003-3133-4989, Role: Conceptualization, Role: Data curation, Role: Formal analysis, Role: Investigation, Role: Methodology, Role: Project administration, Role: Supervision, Role: Writing – original draft, Role: Writing – review & editing
            Role: Editor
            Journal
            PLoS One
            PLoS ONE
            plos
            plosone
            PLoS ONE
            Public Library of Science (San Francisco, CA USA )
            1932-6203
            4 January 2018
            2018
            : 13
            : 1
            29300764
            5754126
            10.1371/journal.pone.0190733
            PONE-D-17-14856
            (Editor)
            © 2018 Levin et al

            This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

            Counts
            Figures: 2, Tables: 3, Pages: 10
            Product
            Funding
            The authors received no specific funding for this work.
            Categories
            Research Article
            Medicine and Health Sciences
            Cardiology
            Heart Failure
            Earth Sciences
            Seasons
            Winter
            Earth Sciences
            Seasons
            Medicine and Health Sciences
            Health Care
            Health Care Facilities
            Hospitals
            Medicine and Health Sciences
            Cardiology
            Myocardial Infarction
            Medicine and Health Sciences
            Public and Occupational Health
            People and places
            Geographical locations
            South America
            Brazil
            Engineering and Technology
            Environmental Engineering
            Pollution
            Custom metadata
            Relevant data are available at: http://www2.datasus.gov.br/DATASUS/index.php?area=0203/.

            Uncategorized

            Comments

            Comment on this article