14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Novel Resistance Training–Specific Rating of Perceived Exertion Scale Measuring Repetitions in Reserve

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The primary aim of this study was to compare rating of perceived exertion (RPE) values measuring repetitions in reserve (RIR) at particular intensities of 1 repetition maximum (RM) in experienced (ES) and novice squatters (NS). Furthermore, this investigation compared average velocity between ES and NS at the same intensities. Twenty-nine individuals (24.0 ± 3.4 years) performed a 1RM squat followed by a single repetition with loads corresponding to 60, 75, and 90% of 1RM and an 8-repetition set at 70% 1RM. Average velocity was recorded at 60, 75, and 90% 1RM and on the first and last repetitions of the 8-repetition set. Subjects reported an RPE value that corresponded to an RIR value (RPE-10 = 0-RIR, RPE-9 = 1-RIR, and so forth). Subjects were assigned to one of the 2 groups: (a) ES (n = 15, training age: 5.2 ± 3.5 years) and (b) NS (n = 14, training age: 0.4 ± 0.6 years). The mean of the average velocities for ES was slower (p ≤ 0.05) than NS at 100% and 90% 1RM. However, there were no differences (p > 0.05) between groups at 60, 75%, or for the first and eighth repetitions at 70% 1RM. In addition, ES recorded greater RPE at 1RM than NS (p = 0.023). In ES, there was a strong inverse relationship between average velocity and RPE at all percentages (r = -0.88, p < 0.001), and a strong inverse correlation in NS between average velocity and RPE at all intensities (r = -0.77, p = 0.001). Our findings demonstrate an inverse relationship between average velocity and RPE/RIR. Experienced squatter group exhibited slower average velocity and higher RPE at 1RM than NS, signaling greater efficiency at high intensities. The RIR-based RPE scale is a practical method to regulate daily training load and provide feedback during a 1RM test.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Variability in training-induced skeletal muscle adaptation

          When human skeletal muscle is exposed to exercise training, the outcomes, in terms of physiological adaptation, are unpredictable. The significance of this fact has long been underappreciated, and only recently has progress been made in identifying some of the molecular bases for the heterogeneous response to exercise training. It is not only of great medical importance that some individuals do not substantially physiologically adapt to exercise training, but the study of the heterogeneity itself provides a powerful opportunity to dissect out the genetic and environmental factors that limit adaptation, directly in humans. In the following review I will discuss new developments linking genetic and transcript abundance variability to an individual's potential to improve their aerobic capacity or endurance performance or induce muscle hypertrophy. I will also comment on the idea that certain gene networks may be associated with muscle “adaptability” regardless the stimulus provided.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Evidence-Based Resistance Training Recommendations

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The effect of autoregulatory progressive resistance exercise vs. linear periodization on strength improvement in college athletes.

              Autoregulatory progressive resistance exercise (APRE) is a method by which athletes increase strength by progressing at their own pace based on daily and weekly variations in performance, unlike traditional linear periodization (LP), where there is a set increase in intensity from week to week. This study examined whether 6 weeks of APRE was more effective at improving strength compared with traditional LP in division I College football players. We compared 23 division 1 collegiate football players (2.65 +/- 0.8 training years) who were trained using either APRE (n = 12) or LP (n = 11) during 6 weeks of preseason training in 2 separate years. After 6 weeks of training, improvements in total bench press 1 repetition maximum (1RM), squat 1RM, and repeated 225-lb bench press repetitions were compared between the APRE and LP protocol groups. Analysis of variance (ANOVA) and analysis of covariance (ANCOVA) were used to determine differences between groups. Statistical significance was accepted at p < or = 0.05. Autoregulatory progressive resistance exercise demonstrated greater improvement in 1RM bench press strength (APRE: 93.4 +/- 103 N vs. LP: -0.40 +/- 49.6 N; ANCOVA: F = 7.1, p = 0.02), estimated 1RM squat strength (APRE: 192.7 +/- 199 N vs. LP: 37.2 +/- 155 N; ANOVA: F = 4.1, p = 0.05) and the number of repetitions performed at a weight of 225 lb (APRE: 3.17 +/- 2.86 vs. LP: -0.09 +/- 2.40 repetitions; ANCOVA: F = 6.8, p = 0.02) compared with the LP group over the 6-week training period. Our findings indicate that the APRE was more effective than the LP means of programming in increasing the bench press and squat over a period of 6 weeks.
                Bookmark

                Author and article information

                Journal
                Journal of Strength and Conditioning Research
                Journal of Strength and Conditioning Research
                Ovid Technologies (Wolters Kluwer Health)
                1064-8011
                2016
                January 2016
                : 30
                : 1
                : 267-275
                Article
                10.1519/JSC.0000000000001049
                26049792
                1a8d015e-96d5-4a75-b163-3d258d2e81d2
                © 2016
                History

                Comments

                Comment on this article