8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Avian Coloration Genetics: Recent Advances and Emerging Questions

      1 , 1
      Journal of Heredity
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The colorful phenotypes of birds have long provided rich source material for evolutionary biologists. Avian plumage, beaks, skin, and eggs—which exhibit a stunning range of cryptic and conspicuous forms—inspired early work on adaptive coloration. More recently, avian color has fueled discoveries on the physiological, developmental, and—increasingly—genetic mechanisms responsible for phenotypic variation. The relative ease with which avian color traits can be quantified has made birds an attractive system for uncovering links between phenotype and genotype. Accordingly, the field of avian coloration genetics is burgeoning. In this review, we highlight recent advances and emerging questions associated with the genetic underpinnings of bird color. We start by describing breakthroughs related to 2 pigment classes: carotenoids that produce red, yellow, and orange in most birds and psittacofulvins that produce similar colors in parrots. We then discuss structural colors, which are produced by the interaction of light with nanoscale materials and greatly extend the plumage palette. Structural color genetics remain understudied—but this paradigm is changing. We next explore how colors that arise from interactions among pigmentary and structural mechanisms may be controlled by genes that are co-expressed, co-expressed or co-regulated. We also identify opportunities to investigate genes mediating within-feather micropatterning and the coloration of bare parts and eggs. We conclude by spotlighting 2 research areas—mechanistic links between color vision and color production, and speciation—that have been invigorated by genetic insights, a trend likely to continue as new genomic approaches are applied to non-model species.

          Related collections

          Most cited references289

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Structural absorption by barbule microstructures of super black bird of paradise feathers

          Many studies have shown how pigments and internal nanostructures generate color in nature. External surface structures can also influence appearance, such as by causing multiple scattering of light (structural absorption) to produce a velvety, super black appearance. Here we show that feathers from five species of birds of paradise (Aves: Paradisaeidae) structurally absorb incident light to produce extremely low-reflectance, super black plumages. Directional reflectance of these feathers (0.05–0.31%) approaches that of man-made ultra-absorbent materials. SEM, nano-CT, and ray-tracing simulations show that super black feathers have titled arrays of highly modified barbules, which cause more multiple scattering, resulting in more structural absorption, than normal black feathers. Super black feathers have an extreme directional reflectance bias and appear darkest when viewed from the distal direction. We hypothesize that structurally absorbing, super black plumage evolved through sensory bias to enhance the perceived brilliance of adjacent color patches during courtship display.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Liquid-liquid phase separation in biology.

            Cells organize many of their biochemical reactions in non-membrane compartments. Recent evidence has shown that many of these compartments are liquids that form by phase separation from the cytoplasm. Here we discuss the basic physical concepts necessary to understand the consequences of liquid-like states for biological functions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Protein Phase Separation: A New Phase in Cell Biology

              Cellular compartments and organelles organize biological matter. Most well-known organelles are separated by a membrane boundary from their surrounding milieu. There are also many so-called membraneless organelles and recent studies suggest that these organelles, which are supramolecular assemblies of proteins and RNA molecules, form via protein phase separation. Recent discoveries have shed light on the molecular properties, formation, regulation, and function of membraneless organelles. A combination of techniques from cell biology, biophysics, physical chemistry, structural biology, and bioinformatics are starting to help establish the molecular principles of an emerging field, thus paving the way for exciting discoveries, including novel therapeutic approaches for the treatment of age-related disorders.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Heredity
                Oxford University Press (OUP)
                0022-1503
                1465-7333
                May 08 2021
                May 08 2021
                Affiliations
                [1 ]Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ
                Article
                10.1093/jhered/esab015
                34002228
                1a8ef479-305a-4670-849a-a76c3700d5be
                © 2021

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article