20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Design and synthesis of novel anthracene derivatives as n-type emitters for electroluminescent devices: a combined experimental and DFT study.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Six novel anthracene-oxadiazole derivatives, 4a (2-(4-(anthracen-9-yl)phenyl)-5-p-tolyl-1,3,4-oxadiazole), 4b (2-(4-(anthracen-9-yl)phenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole), 4c (2-(4-(anthracen-9-yl)phenyl)-5-(4-methoxyphenyl)-1,3,4-oxadiazole), 8a (2-(4-(anthracen-9-yl)phenyl)-5-m-tolyl-1,3,4-oxadiazole), 8b (2-(3-(anthracen-9-yl)phenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole) and 8c (2-(3-(anthracen-9-yl)phenyl)-5-(3,4,5-trimethoxyphenyl)-1,3,4-oxadiazole) have been synthesized and characterized for use as emitters in organic light emitting devices (OLEDs). They show good thermal stability (T(d), 297-364 °C) and glass transition temperatures (T(g)) in the range of 82-98 °C, as seen from the thermo gravimetric analysis and differential scanning calorimetric studies. The solvatochromism phenomenon and electrochemical properties have been studied in detail using UV-Vis absorption, fluorescence spectroscopy and cyclic voltammetry. TD-DFT calculations have been carried out to understand the electrochemical and photophysical properties. The spatial structures of 4b and 8c are further confirmed by X-ray diffraction analysis. Un-optimized non-doped electroluminescent devices were fabricated using these anthracene derivatives as emitters with the following device configuration: ITO (120 nm)/α-NPD (30 nm)/4a-4c or 8a-8c(35 nm)/BCP (6 nm)/Alq3 (28 nm)/LiF (1 nm)/Al (150 nm). Among all the six compounds, 8a displays the maximum brightness of 1728 cd m(-2) and current efficiency 0.89 cd A(-1). Furthermore, as an electron transporter, 8a exhibited superior performance (current efficiency is 11.7 cd A(-1)) than the device using standard Alq3 (current efficiency is 8.69 cd A(-1)), demonstrating its high potential for employment in OLEDs. These results indicate that the new anthracene-oxadiazole derivatives could play an important role in the development of OLEDs.

          Related collections

          Author and article information

          Journal
          Photochem. Photobiol. Sci.
          Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology
          1474-9092
          1474-905X
          Feb 2014
          : 13
          : 2
          Affiliations
          [1 ] Crop Protection Chemicals Division, Indian Institute of Chemical Technology, Hyderabad 500007, India.
          Article
          10.1039/c3pp50284h
          24352257
          1aa2ebe3-26db-4ae0-9d02-da59dc164efb
          History

          Comments

          Comment on this article