49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TWEAK/Fn14 interaction regulates RANTES production, BMP-2-induced differentiation, and RANKL expression in mouse osteoblastic MC3T3-E1 cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK), a member of the TNF family, is a multifunctional cytokine that regulates cell growth, migration, and survival principally through a TWEAK receptor, fibroblast growth factor-inducible 14 (Fn14). However, its physiological roles in bone are largely unknown. We herein report various effects of TWEAK on mouse osteoblastic MC3T3-E1 cells. MC3T3-E1 cells expressed Fn14 and produced RANTES (regulated upon activation, healthy T cell expressed and secreted) upon TWEAK stimulation through PI3K-Akt, but not nuclear factor-κB (NF-κB), pathway. In addition, TWEAK inhibited bone morphogenetic protein (BMP)-2-induced expression of osteoblast differentiation markers such as alkaline phosphatase through mitogen-activated protein kinase (MAPK) Erk pathway. Furthermore, TWEAK upregulated RANKL (receptor activation of NF-κB ligand) expression through MAPK Erk pathway in MC3T3-E1 cells. All these effects of TWEAK on MC3T3-E1 cells were abolished by mouse Fn14-Fc chimera. We also found significant TWEAK mRNA or protein expression in osteoblast – and osteoclast-lineage cell lines or the mouse bone tissue, respectively. Finally, we showed that human osteoblasts expressed Fn14 and induced RANTES and RANKL upon TWEAK stimulation. Collectively, TWEAK/Fn14 interaction regulates RANTES production, BMP-2-induced differentiation, and RANKL expression in MC3T3-E1 cells. TWEAK may thus be a novel cytokine that regulates several aspects of osteoblast function.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL.

          Osteoclasts, the multinucleated cells that resorb bone, develop from hematopoietic cells of monocyte/macrophage lineage. Osteoclast-like cells (OCLs) are formed by coculturing spleen cells with osteoblasts or bone marrow stromal cells in the presence of bone-resorbing factors. The cell-to-cell interaction between osteoblasts/stromal cells and osteoclast progenitors is essential for OCL formation. Recently, we purified and molecularly cloned osteoclastogenesis-inhibitory factor (OCIF), which was identical to osteoprotegerin (OPG). OPG/OCIF is a secreted member of the tumor necrosis factor receptor family and inhibits osteoclastogenesis by interrupting the cell-to-cell interaction. Here we report the expression cloning of a ligand for OPG/OCIF from a complementary DNA library of mouse stromal cells. The protein was found to be a member of the membrane-associated tumor necrosis factor ligand family and induced OCL formation from osteoclast progenitors. A genetically engineered soluble form containing the extracellular domain of the protein induced OCL formation from spleen cells in the absence of osteoblasts/stromal cells. OPG/OCIF abolished the OCL formation induced by the protein. Expression of its gene in osteoblasts/stromal cells was up-regulated by bone-resorbing factors. We conclude that the membrane-bound protein is osteoclast differentiation factor (ODF), a long-sought ligand mediating an essential signal to osteoclast progenitors for their differentiation into osteoclasts. ODF was found to be identical to TRANCE/RANKL, which enhances T-cell growth and dendritic-cell function. ODF seems to be an important regulator in not only osteoclastogenesis but also immune system.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Bone morphogenetic proteins: multifunctional regulators of vertebrate development.

            B Hogan (1996)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria

              We investigated the capacity of a clonal osteogenic cell line MC3T3-E1, established from newborn mouse calvaria and selected on the basis of high alkaline phosphatase (ALP) activity in the confluent state, to differentiate into osteoblasts and mineralize in vitro. The cells in the growing state showed a fibroblastic morphology and grew to form multiple layers. On day 21, clusters of cells exhibiting typical osteoblastic morphology were found in osmiophilic nodular regions. Such nodules increased in number and size with incubation time and became easily identifiable with the naked eye by day 40-50. In the central part of well-developed nodules, osteocytes were embedded in heavily mineralized bone matrix. Osteoblasts were arranged at the periphery of the bone spicules and were surrounded by lysosome-rich cells and a fibroblastic cell layer. Numerous matrix vesicles were scattered around the osteoblasts and young osteocytes. Matrix vesicles and plasma membranes of osteoblasts, young osteocytes, and lysosome-rich cells showed strong reaction to cytochemical stainings for ALP activity and calcium ions. Minerals were initially localized in the matrix vesicles and then deposited on well-banded collagen fibrils. Deposited minerals consisted exclusively of calcium and phosphorus, and some of the crystals had matured into hydroxyapatite crystals. These results indicate that MC3T3-E1 cells have the capacity to differentiate into osteoblasts and osteocytes and to form calcified bone tissue in vitro.
                Bookmark

                Author and article information

                Journal
                Arthritis Res Ther
                Arthritis Research & Therapy
                BioMed Central (London )
                1478-6354
                1478-6362
                2006
                1 September 2006
                : 8
                : 5
                : R146
                Affiliations
                [1 ]Department of Immunology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
                [2 ]Department of Orthopedic Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
                [3 ]Atopy Research Center, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
                [4 ]Department of Immunology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
                Article
                ar2038
                10.1186/ar2038
                1779446
                16945157
                1aa66fb1-422c-4b76-9b33-e3ac9d11340d
                Copyright © 2006 Ando et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 April 2006
                : 19 May 2006
                : 13 July 2006
                : 1 September 2006
                Categories
                Research Article

                Orthopedics
                Orthopedics

                Comments

                Comment on this article