20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Motile Properties of Vimentin Intermediate Filament Networks in Living Cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The motile properties of intermediate filament (IF) networks have been studied in living cells expressing vimentin tagged with green fluorescent protein (GFP-vimentin). In interphase and mitotic cells, GFP-vimentin is incorporated into the endogenous IF network, and accurately reports the behavior of IF. Time-lapse observations of interphase arrays of vimentin fibrils demonstrate that they are constantly changing their configurations in the absence of alterations in cell shape. Intersecting points of vimentin fibrils, or foci, frequently move towards or away from each other, indicating that the fibrils can lengthen or shorten. Fluorescence recovery after photobleaching shows that bleach zones across fibrils rapidly recover their fluorescence. During this recovery, bleached zones frequently move, indicating translocation of fibrils. Intriguingly, neighboring fibrils within a cell can exhibit different rates and directions of movement, and they often appear to extend or elongate into the peripheral regions of the cytoplasm. In these same regions, short filamentous structures are also seen actively translocating. All of these motile properties require energy, and the majority appear to be mediated by interactions of IF with microtubules and microfilaments.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product.

          Six monoclonal antibodies have been isolated from mice immunized with synthetic peptide immunogens whose sequences are derived from that of the human c-myc gene product. Five of these antibodies precipitate p62c-myc from human cells, and three of these five also recognize the mouse c-myc gene product. None of the antibodies sees the chicken p110gag-myc protein. All six antibodies recognize immunoblotted p62c-myc. These reagents also provide the basis for an immunoblotting assay by which to quantitate p62c-myc in cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid actin-based plasticity in dendritic spines.

            Dendritic spines have been proposed as primary sites of synaptic plasticity in the brain. Consistent with this hypothesis, spines contain high concentrations of actin, suggesting that they might be motile. To investigate this possibility, we made video recordings from hippocampal neurons expressing actin tagged with green fluorescent protein (GFP-actin). This reagent incorporates into actin-containing structures and allows the visualization of actin dynamics in living neurons. In mature neurons, recordings of GFP fluorescence revealed large actin-dependent changes in dendritic spine shape, similar to those inferred from previous studies using fixed tissues. Visible changes occurred within seconds, suggesting that anatomical plasticity at synapses can be extremely rapid. As well as providing a molecular basis for structural plasticity, the presence of motile actin in dendritic spines implicates the postsynaptic element as a primary site of this phenomenon.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nanomolar concentrations of nocodazole alter microtubule dynamic instability in vivo and in vitro.

              Previous studies demonstrated that nanomolar concentrations of nocodazole can block cells in mitosis without net microtubule disassembly and resulted in the hypothesis that this block was due to a nocodazole-induced stabilization of microtubules. We tested this hypothesis by examining the effects of nanomolar concentrations of nocodazole on microtubule dynamic instability in interphase cells and in vitro with purified brain tubulin. Newt lung epithelial cell microtubules were visualized by video-enhanced differential interference contrast microscopy and cells were perfused with solutions of nocodazole ranging in concentration from 4 to 400 nM. Microtubules showed a loss of the two-state behavior typical of dynamic instability as evidenced by the addition of a third state where they exhibited little net change in length (a paused state). Nocodazole perfusion also resulted in slower elongation and shortening velocities, increased catastrophe, and an overall decrease in microtubule turnover. Experiments performed on BSC-1 cells that were microinjected with rhodamine-labeled tubulin, incubated in nocodazole for 1 h, and visualized by using low-light-level fluorescence microscopy showed similar results except that nocodazole-treated BSC-1 cells showed a decrease in catastrophe. To gain insight into possible mechanisms responsible for changes in dynamic instability, we examined the effects of 4 nM to 12 microM nocodazole on the assembly of purified tubulin from axoneme seeds. At both microtubule plus and minus ends, perfusion with nocodazole resulted in a dose-dependent decrease in elongation and shortening velocities, increase in pause duration and catastrophe frequency, and decrease in rescue frequency. These effects, which result in an overall decrease in microtubule turnover after nocodazole treatment, suggest that the mitotic block observed is due to a reduction in microtubule dynamic turnover. In addition, the in vitro results are similar to the effects of increasing concentrations of GDP-tubulin (TuD) subunits on microtubule assembly. Given that nocodazole increases tubulin GTPase activity, we propose that nocodazole acts by generating TuD subunits that then alter dynamic instability.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                5 October 1998
                : 143
                : 1
                : 147-157
                Affiliations
                Northwestern University Medical School, Department of Cell and Molecular Biology, Chicago, Illinois 60611
                Article
                10.1083/jcb.143.1.147
                2132819
                9763427
                1ab99fa4-38cf-4509-af42-6859d3c8d84b
                Copyright @ 1998
                History
                : 3 June 1998
                : 26 August 1998
                Categories
                Regular Articles

                Cell biology
                intermediate filaments,vimentin,microtubules,microfilaments,green fluorescent protein
                Cell biology
                intermediate filaments, vimentin, microtubules, microfilaments, green fluorescent protein

                Comments

                Comment on this article