17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Review on the Prevalence and Persistence of Neuromyths in Education – Where We Stand and What Is Still Needed

      ,
      Frontiers in Education
      Frontiers Media SA

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The buzzword brain-based learning emerged in the 1970s and continues to fascinate teachers and learners in schools and universities today. However, what interested teachers often fail to realize is that brain-based or brain-friendly learning can not only be a plausible concept, but also a myth when applied incorrectly. Numerous empirical studies reveal a high degree of support for misconceptions about learning and the brain, known as neuromyths, among both pre-service and in-service teachers. When applied in the classroom, these myths can waste the educational system’s money, time and effort. Even though the neuromyths issue has been known for two decades and the topic remains a focus of constant research, even today, the research discourse barely goes beyond replicating the earliest research findings. This review article provides an overview of the theoretical and empirical state of research on neuromyths. As part of this, ten neuromyths on the subject of learning and memory will be described in terms of content and the results of prior studies on neuromyths will be summarized. The overview of the theoretical and empirical state of research serves as a basis for highlighting controversies, fundamental concepts, issues and problems, current research gaps and potential developments in the field. Topics discussed include whether controversial research findings on correlations with endorsement of neuromyths are merely a methodological artefact, and why contradictions exist between the theoretical and empirical state of research. In addition, three central research gaps will be identified: First, studies should be conducted on whether and to what extent the endorsement of neuromyths really deprives teachers and students of opportunities to spend the education system’s money, time and effort on more effective theories and methods. Second, there is too little work on developing and evaluating intervention approaches to combat neuromyths. Third, a standard scientific methodology or guidelines for determining new neuromyths are lacking. As desirable future developments in the field, more work educating people on neuromyths, uniform vocabulary, and interdisciplinary cooperation are highlighted. This contributes to answering the question of to what extent interweaving neuroscience, educational science and cognitive psychology can contribute to reducing the prevalence of neuromyths in education.

          Related collections

          Most cited references138

          • Record: found
          • Abstract: found
          • Article: not found

          A Brain-Wide Study of Age-Related Changes in Functional Connectivity.

          Aging affects functional connectivity between brain areas, however, a complete picture of how aging affects integration of information within and between functional networks is missing. We used complex network measures, derived from a brain-wide graph, to provide a comprehensive overview of age-related changes in functional connectivity. Functional connectivity in young and older participants was assessed during resting-state fMRI. The results show that aging has a large impact, not only on connectivity within functional networks but also on connectivity between the different functional networks in the brain. Brain networks in the elderly showed decreased modularity (less distinct functional networks) and decreased local efficiency. Connectivity decreased with age within networks supporting higher level cognitive functions, that is, within the default mode, cingulo-opercular and fronto-parietal control networks. Conversely, no changes in connectivity within the somatomotor and visual networks, networks implicated in primary information processing, were observed. Connectivity between these networks even increased with age. A brain-wide analysis approach of functional connectivity in the aging brain thus seems fundamental in understanding how age affects integration of information. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structural and functional brain development and its relation to cognitive development.

            Despite significant gains in the fields of pediatric neuroimaging and developmental neurobiology, surprisingly little is known about the developing human brain or the neural bases of cognitive development. This paper addresses MRI studies of structural and functional changes in the developing human brain and their relation to changes in cognitive processes over the first few decades of human life. Based on post-mortem and pediatric neuroimaging studies published to date, the prefrontal cortex appears to be one of the last brain regions to mature. Given the prolonged physiological development and organization of the prefrontal cortex during childhood, tasks believed to involve this region are ideal for investigating the neural bases of cognitive development. A number of normative pediatric fMRI studies examining prefrontal cortical activity in children during memory and attention tasks are reported. These studies, while largely limited to the domain of prefrontal functioning and its development, lend support for continued development of attention and memory both behaviorally and physiologically throughout childhood and adolescence. Specifically, the magnitude of activity observed in these studies was greater and more diffuse in children relative to adults. These findings are consistent with the view that increasing cognitive capacity during childhood may coincide with a gradual loss rather than formation of new synapses and presumably a strengthening of remaining synaptic connections. It is clear that innovative methods like fMRI together with MRI-based morphometry and nonhuman primate studies will transform our current understanding of human brain development and its relation to behavioral development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Search for True Numbers of Neurons and Glial Cells in the Human Brain: A Review of 150 Years of Cell Counting.

              For half a century, the human brain was believed to contain about 100 billion neurons and one trillion glial cells, with a glia:neuron ratio of 10:1. A new counting method, the isotropic fractionator, has challenged the notion that glia outnumber neurons and revived a question that was widely thought to have been resolved. The recently validated isotropic fractionator demonstrates a glia:neuron ratio of less than 1:1 and a total number of less than 100 billion glial cells in the human brain. A survey of original evidence shows that histological data always supported a 1:1 ratio of glia to neurons in the entire human brain, and a range of 40-130 billion glial cells. We review how the claim of one trillion glial cells originated, was perpetuated, and eventually refuted. We compile how numbers of neurons and glial cells in the adult human brain were reported and we examine the reasons for an erroneous consensus about the relative abundance of glial cells in human brains that persisted for half a century. Our review includes a brief history of cell counting in human brains, types of counting methods that were and are employed, ranges of previous estimates, and the current status of knowledge about the number of cells. We also discuss implications and consequences of the new insights into true numbers of glial cells in the human brain, and the promise and potential impact of the newly validated isotropic fractionator for reliable quantification of glia and neurons in neurological and psychiatric diseases. This article is protected by copyright. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Frontiers in Education
                Front. Educ.
                Frontiers Media SA
                2504-284X
                July 21 2021
                July 21 2021
                : 6
                Article
                10.3389/feduc.2021.665752
                1ac64fcb-e974-468c-bb99-27479043d86f
                © 2021

                Free to read

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article