15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Is the rest perfusion measurement necessary for the diagnosis of myocardial ischaemia in quantitative cardiac perfusion? A CE-MARC sub-study

      abstract
      1 , 3 , , 2 , 1 , 3 , 3 , 4
      Journal of Cardiovascular Magnetic Resonance
      BioMed Central
      17th Annual SCMR Scientific Sessions
      16-19 January 2014

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background Diagnostic studies using dynamic contrast enhanced (DCE) MRI perfusion imaging typically evaluate perfusion in terms of the myocardial perfusion reserve (MPR), which is the ratio of stress to rest myocardial blood flow (MBF) measurements. The aim of this study was to establish whether or not, in the case of absolute MBF quantitation, the MPR exhibits a diagnostic advantage over the stress MBF measurements alone. Methods This was a retrospective sub-study using data from the CE-MARC trial (Greenwood et al., Lancet, 2012). The CE-MARC trial collected quantitative X-ray angiography data and Single Photon Computed Tomography (SPECT) imaging data as well as DCE-MRI cardiac perfusion data from 752 randomised patients. This allowed a unique gold-standard assessment for the diagnosis of myocardial ischaemia to be generated for this study; being the consensus diagnosis of anatomical (X-ray angiography) and functional (SPECT) imaging. Fifty patients were selected such that the distribution of risk factors and disease status within the sample was representative of the full CE-MARC cohort. Quantitative myocardial blood flow estimates were obtained using four commonly used perfusion models in order to ascertain whether the results were consistent across analysis methodologies. These models were: Fermi-constrained deconvolution, model independent deconvolution, the uptake model and the one compartment model. The three cardiac slices from the MRI data sets were subdivided into 16 segments according to the American Heart Association (AHA) recommendations for perfusion imaging. Rest and stress MBF estimates were established for each of these segments and the MPR was calculated. Using the minimum perfusion score Receiver Operator Characteristic (ROC) curves were then generated using MPR and stress MBF as the diagnostic measure. A DeLong, DeLong, Clarke-Pearson comparison was used to test for statistically significant differences in the Area Under the Curve (AUC) values between the MPR and stress MBF ROC curves. Results There was no significant difference in diagnostic performance between stress MBF and MPR with any of the four models (Figure 1). The area under the curve (AUC) values for MPR and stress MBF were: Fermi (0.92, 0.86), Uptake (0.87, 0.85), One compartment (0.80, 0.85) and model independent (0.87, 0.87) respectively. Figure 1 ROC curves using stress MBF and MPR as the diagnostic measure for a) Fermi-constrained deconvolution, b) the uptake model, c) the one compartment model and d) model independent deconvolution. DeLong, DeLong Clarke-Pearson p-values for the comparison of the AUC values are shown under the legends. Conclusions Our results demonstrate that stress MBF measurements perform as well as MPR in diagnosing myocardial ischaemia. This implies that the rest MBF measurement does not add any significant information to the diagnosis and could potentially be removed from the investigation protocol without any reduction in diagnostic performance. Funding This work was funded by an NIHR doctoral training fellowship.

          Related collections

          Author and article information

          Conference
          J Cardiovasc Magn Reson
          J Cardiovasc Magn Reson
          Journal of Cardiovascular Magnetic Resonance
          BioMed Central
          1097-6647
          1532-429X
          2014
          16 January 2014
          : 16
          : Suppl 1
          : P178
          Affiliations
          [1 ]Division of Medical Physics, University of Leeds, Leeds, UK
          [2 ]School of Computing, University of Leeds, Leeds, UK
          [3 ]MCRC & LIGHT, University of Leeds, Leeds, UK
          [4 ]Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Centre, University of Glasgow, Leeds, UK
          Article
          1532-429X-16-S1-P178
          10.1186/1532-429X-16-S1-P178
          4045120
          1ad8981b-ee50-45cf-839f-9bea92c06fe2
          Copyright © 2014 Biglands et al.; licensee BioMed Central Ltd.

          This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

          17th Annual SCMR Scientific Sessions
          New Orleans, LA, USA
          16-19 January 2014
          History
          Categories
          Poster Presentation

          Cardiovascular Medicine
          Cardiovascular Medicine

          Comments

          Comment on this article