9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Recovery of Corneal Sensitivity and Increase in Nerve Density and Wound Healing in Diabetic Mice After PEDF Plus DHA Treatment

      research-article
      , , ,
      Diabetes
      American Diabetes Association

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diabetic keratopathy decreases corneal sensation and tear secretion and delays wound healing after injury. In the current study, we tested the effect of treatment with pigment epithelium-derived factor (PEDF) in combination with docosahexaenoic acid (DHA) on corneal nerve regeneration in a mouse model of diabetes with or without corneal injury. The study was performed in streptozotocin-induced diabetic mice (C57BL/6). Ten weeks after streptozotocin injection, diabetic mice showed significant decreases of corneal sensitivity, tear production, and epithelial subbasal nerve density when compared with age-matched normal mice. After diabetic mice were wounded in the right eye and treated in both eyes with PEDF+DHA for 2 weeks, there was a significant increase in corneal epithelial nerve regeneration and substance P–positive nerve density in both wounded and unwounded eyes compared with vehicle-treated corneas. There also was elevated corneal sensitivity and tear production in the treated corneas compared with vehicle. In addition, PEDF+DHA accelerated corneal wound healing, selectively recruited type 2 macrophages, and prevented neutrophil infiltration in diabetic wounded corneas. These results suggest that topical treatment with PEDF+DHA promotes corneal nerve regeneration and wound healing in diabetic mice and could potentially be exploited as a therapeutic option for the treatment of diabetic keratopathy.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Corneal nerves: structure, contents and function

          Experimental Eye Research, 76(5), 521-542
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Progress in corneal wound healing.

            Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells and remodeling of the basement membrane. During stromal healing, keratocytes get transformed to motile and contractile myofibroblasts largely due to activation of transforming growth factor-β (TGF-β) system. Endothelial cells heal mostly by migration and spreading, with cell proliferation playing a secondary role. In the last decade, many aspects of wound healing process in different parts of the cornea have been elucidated, and some new therapeutic approaches have emerged. The concept of limbal stem cells received rigorous experimental corroboration, with new markers uncovered and new treatment options including gene and microRNA therapy tested in experimental systems. Transplantation of limbal stem cell-enriched cultures for efficient re-epithelialization in stem cell deficiency and corneal injuries has become reality in clinical setting. Mediators and course of events during stromal healing have been detailed, and new treatment regimens including gene (decorin) and stem cell therapy for excessive healing have been designed. This is a very important advance given the popularity of various refractive surgeries entailing stromal wound healing. Successful surgical ways of replacing the diseased endothelium have been clinically tested, and new approaches to accelerate endothelial healing and suppress endothelial-mesenchymal transformation have been proposed including Rho kinase (ROCK) inhibitor eye drops and gene therapy to activate TGF-β inhibitor SMAD7. Promising new technologies with potential for corneal wound healing manipulation including microRNA, induced pluripotent stem cells to generate corneal epithelium, and nanocarriers for corneal drug delivery are discussed. Attention is also paid to problems in wound healing understanding and treatment, such as lack of specific epithelial stem cell markers, reliable identification of stem cells, efficient prevention of haze and stromal scar formation, lack of data on wound regulating microRNAs in keratocytes and endothelial cells, as well as virtual lack of targeted systems for drug and gene delivery to select corneal cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Macrophage Dysfunction Impairs Resolution of Inflammation in the Wounds of Diabetic Mice

              Background Chronic inflammation is a characteristic feature of diabetic cutaneous wounds. We sought to delineate novel mechanisms involved in the impairment of resolution of inflammation in diabetic cutaneous wounds. At the wound-site, efficient dead cell clearance (efferocytosis) is a pre-requisite for the timely resolution of inflammation and successful healing. Methodology/Principal Findings Macrophages isolated from wounds of diabetic mice showed significant impairment in efferocytosis. Impaired efferocytosis was associated with significantly higher burden of apoptotic cells in wound tissue as well as higher expression of pro-inflammatory and lower expression of anti-inflammatory cytokines. Observations related to apoptotic cell load at the wound site in mice were validated in the wound tissue of diabetic and non-diabetic patients. Forced Fas ligand driven elevation of apoptotic cell burden at the wound site augmented pro-inflammatory and attenuated anti-inflammatory cytokine response. Furthermore, successful efferocytosis switched wound macrophages from pro-inflammatory to an anti-inflammatory mode. Conclusions/Significance Taken together, this study presents first evidence demonstrating that diabetic wounds suffer from dysfunctional macrophage efferocytosis resulting in increased apoptotic cell burden at the wound site. This burden, in turn, prolongs the inflammatory phase and complicates wound healing.
                Bookmark

                Author and article information

                Journal
                Diabetes
                Diabetes
                diabetes
                diabetes
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                September 2017
                07 June 2017
                : 66
                : 9
                : 2511-2520
                Affiliations
                [1]Neuroscience Center of Excellence and Department of Ophthalmology, School of Medicine, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA
                Author notes
                Corresponding author: Haydee E.P. Bazan, hbazan1@ 123456lsuhsc.edu .
                Author information
                http://orcid.org/0000-0001-7172-7870
                Article
                0249
                10.2337/db17-0249
                5566302
                28592408
                1aea4b21-5f9d-4270-8430-54f917c20a3a
                © 2017 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals.org/content/license.

                History
                : 24 February 2017
                : 31 May 2017
                Page count
                Figures: 6, Tables: 0, Equations: 0, References: 58, Pages: 10
                Funding
                Funded by: National Institutes of Health, DOI http://dx.doi.org/10.13039/100000053;
                Award ID: R01-EY-19465
                Funded by: National Institutes of Health, DOI http://dx.doi.org/10.13039/100000057;
                Award ID: GM-103340
                Categories
                0701
                Pharmacology and Therapeutics

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article