41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mass Lead Intoxication from Informal Used Lead-Acid Battery Recycling in Dakar, Senegal

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and objectives

          Between November 2007 and March 2008, 18 children died from a rapidly progressive central nervous system disease of unexplained origin in a community involved in the recycling of used lead-acid batteries (ULAB) in the suburbs of Dakar, Senegal. We investigated the cause of these deaths.

          Methods

          Because autopsies were not possible, the investigation centered on clinical and laboratory assessments performed on 32 siblings of deceased children and 23 mothers and on 18 children and 8 adults living in the same area, complemented by environmental health investigations.

          Results

          All 81 individuals investigated were poisoned with lead, some of them severely. The blood lead level of the 50 children tested ranged from 39.8 to 613.9 μg/dL with a mean of 129.5 μg/dL. Seventeen children showed severe neurologic features of toxicity. Homes and soil in surrounding areas were heavily contaminated with lead (indoors, up to 14,000 mg/kg; outdoors, up to 302,000 mg/kg) as a result of informal ULAB recycling.

          Conclusions

          Our investigations revealed a mass lead intoxication that occurred through inhalation and ingestion of soil and dust heavily contaminated with lead as a result of informal and unsafe ULAB recycling. Circumstantial evidence suggested that most or all of the 18 deaths were due to encephalopathy resulting from severe lead intoxication. Findings also suggest that most habitants of the contaminated area, estimated at 950, are also likely to be poisoned. This highlights the severe health risks posed by informal ULAB recycling, in particular in developing countries, and emphasizes the need to strengthen national and international efforts to address this global public health problem.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Low-Level Environmental Lead Exposure and Children’s Intellectual Function: An International Pooled Analysis

          Lead is a confirmed neurotoxin, but questions remain about lead-associated intellectual deficits at blood lead levels < 10 μg/dL and whether lower exposures are, for a given change in exposure, associated with greater deficits. The objective of this study was to examine the association of intelligence test scores and blood lead concentration, especially for children who had maximal measured blood lead levels < 10 μg/dL. We examined data collected from 1,333 children who participated in seven international population-based longitudinal cohort studies, followed from birth or infancy until 5–10 years of age. The full-scale IQ score was the primary outcome measure. The geometric mean blood lead concentration of the children peaked at 17.8 μg/dL and declined to 9.4 μg/dL by 5–7 years of age; 244 (18%) children had a maximal blood lead concentration < 10 μg/dL, and 103 (8%) had a maximal blood lead concentration < 7.5 μg/dL. After adjustment for covariates, we found an inverse relationship between blood lead concentration and IQ score. Using a log-linear model, we found a 6.9 IQ point decrement [95% confidence interval (CI), 4.2–9.4] associated with an increase in concurrent blood lead levels from 2.4 to 30 μg/dL. The estimated IQ point decrements associated with an increase in blood lead from 2.4 to 10 μg/dL, 10 to 20 μg/dL, and 20 to 30 μg/dL were 3.9 (95% CI, 2.4–5.3), 1.9 (95% CI, 1.2–2.6), and 1.1 (95% CI, 0.7–1.5), respectively. For a given increase in blood lead, the lead-associated intellectual decrement for children with a maximal blood lead level < 7.5 μg/dL was significantly greater than that observed for those with a maximal blood lead level ≥7.5 μg/dL (p = 0.015). We conclude that environmental lead exposure in children who have maximal blood lead levels < 7.5 μg/dL is associated with intellectual deficits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter.

            Despite dramatic declines in children's blood lead concentrations and a lowering of the Centers for Disease Control and Prevention's level of concern to 10 microg per deciliter (0.483 micromol per liter), little is known about children's neurobehavioral functioning at lead concentrations below this level. We measured blood lead concentrations in 172 children at 6, 12, 18, 24, 36, 48, and 60 months of age and administered the Stanford-Binet Intelligence Scale at the ages of 3 and 5 years. The relation between IQ and blood lead concentration was estimated with the use of linear and nonlinear mixed models, with adjustment for maternal IQ, quality of the home environment, and other potential confounders. The blood lead concentration was inversely and significantly associated with IQ. In the linear model, each increase of 10 microg per deciliter in the lifetime average blood lead concentration was associated with a 4.6-point decrease in IQ (P=0.004), whereas for the subsample of 101 children whose maximal lead concentrations remained below 10 microg per deciliter, the change in IQ associated with a given change in lead concentration was greater. When estimated in a nonlinear model with the full sample, IQ declined by 7.4 points as lifetime average blood lead concentrations increased from 1 to 10 microg per deciliter. Blood lead concentrations, even those below 10 microg per deciliter, are inversely associated with children's IQ scores at three and five years of age, and associated declines in IQ are greater at these concentrations than at higher concentrations. These findings suggest that more U.S. children may be adversely affected by environmental lead than previously estimated. Copyright 2003 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neurodevelopmental effects of postnatal lead exposure at very low levels.

              This study is among the first to examine specific neurobehavioral deficits in children exposed at very low lead levels. A systematic analysis for the presence of a threshold of lead exposure was conducted. The sample consisted of 246 African American, inner-city children from whom blood lead concentrations were assessed at 7.5 years of age. The results consistently show neurobehavioral deficits in relation to low levels of lead in the areas of intelligence, reaction time, visual-motor integration, fine motor skills, attention, including executive function, off-task behaviors, and teacher-reported withdrawn behaviors. Effects were identified in the specific domains of attention, executive function, visual-motor integration, social behavior, and motor skills, which have been previously suggested as part of lead's "behavioral signature". Visual inspection of nonparametric regression plots suggested a gradual linear dose-response relation for most endpoints. No threshold discontinuity was evident. Regression analyses in which lead exposure was dichotomized at 10 microg/dl were no more likely to be significant than analyses dichotomizing exposure at 5 microg/dl. Given that associations were found between lead levels as low as 3 microg/dl for multiple outcomes, these data provide additional evidence that there is no apparent lower bound threshold for postnatal lead exposure.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environmental Health Perspectives
                National Institute of Environmental Health Sciences
                0091-6765
                1552-9924
                October 2009
                14 May 2009
                : 117
                : 10
                : 1535-1540
                Affiliations
                [1 ] Department of Public Health and Environment, World Health Organization, Geneva, Switzerland
                [2 ] Centre Anti-Poison, CHRU Lille, Lille, France
                [3 ] Senegal Country Office, World Health Organization, Dakar, Senegal
                [4 ] Centre Anti-Poison, Dakar, Senegal
                [5 ] Hôpital de Pikine, Pikine, Dakar, Senegal
                Author notes
                Address correspondence to P. Haefliger, Department of Public Health and Environment, World Health Organization, av. Appia 20, 1211 Geneva 27, Switzerland. Telephone: 41 22 791 35 73. Fax: 41 22 791 48 48. E-mail: haefligerp@ 123456who.int .

                The authors declare they have no competing financial interests.

                Article
                ehp-117-1535
                10.1289/ehp.0900696
                2790507
                20019903
                1af14253-605a-46c2-b860-b01e35f662f5
                This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original DOI.
                History
                : 16 February 2009
                : 14 May 2009
                Categories
                Research

                Public health
                children,battery,intoxication,lead,poisoning,recycling,ulab
                Public health
                children, battery, intoxication, lead, poisoning, recycling, ulab

                Comments

                Comment on this article