Blog
About

  • Record: found
  • Abstract: not found
  • Article: not found

Polyphenols: food sources and bioavailability

Read this article at

ScienceOpenPublisher
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Related collections

      Most cited references 235

      • Record: found
      • Abstract: found
      • Article: not found

      Phyto-oestrogens and Western diseases.

      Incidences of breast, colorectal and prostate cancer are high in the Western world compared to countries in Asia. We have postulated that the Western diet compared to the semivegetarian diet in some Asian countries may alter hormone production, metabolism or action at the cellular level by some biochemical mechanisms. Our interest has been focused on two groups of hormone-like diphenolic phyto-oestrogens of dietary origin, the lignans and isoflavonoids abundant in plasma of subjects living in areas with low cancer incidence. The precursors of the biologically active compounds detected in man are found in soybean products, whole-grain cereal food, seeds, and berries. The plant lignan and isoflavonoid glycosides are converted by intestinal bacteria to hormone-like compounds. The weakly oestrogenic diphenols formed influence sex-hormone production, metabolism and biological activity, intracellular enzymes, protein synthesis, growth factor action, malignant cell proliferation, differentiation, cell adhesion and angiogenesis in such a way as to make them strong candidates for a role as natural cancer-protective compounds. Their effect on some of the most important steroid biosynthetic enzymes may result in beneficial modulation of hormone concentrations and action in the cells preventing development of cancer. Owing to their oestrogenic activity they reduce hot flushes and vaginal dryness in postmenopausal women and may to some degree inhibit osteoporosis, but alone they may be insufficient for complete protection. Soy intake prevents oxidation of the low-density lipoproteins in vitro when isolated from soy-treated individuals and affect favourably plasma lipid concentrations. Animal experiments provide evidence suggesting that both lignans and isoflavonoids may prevent the development of cancer as well as atherosclerosis. However, in some of these experiments it has not been possible to separate the phyto-oestrogen effect from the effect of other components in the food. The isoflavonoids and lignans may play a significant inhibitory role in cancer development particularly in the promotional phase of the disease, but recent evidence points also to a role in the initiation stage of carcinogenesis. At present, however, no definite recommendations can be made as to the dietary amounts needed for prevention of disease. This review deals with all the above-mentioned aspects of phyto-oestrogens.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        The clinical importance of the metabolite equol-a clue to the effectiveness of soy and its isoflavones.

        Equol [7-hydroxy-3-(4'-hydroxyphenyl)-chroman] is a nonsteroidal estrogen of the isoflavone class. It is exclusively a product of intestinal bacterial metabolism of dietary isoflavones and it possesses estrogenic activity, having affinity for both estrogen receptors, ERalpha and ERbeta. Equol is superior to all other isoflavones in its antioxidant activity. It is the end product of the biotransformation of the phytoestrogen daidzein, one of the two main isoflavones found in abundance in soybeans and most soy foods. Once formed, it is relatively stable; however, equol is not produced in all healthy adults in response to dietary challenge with soy or daidzein. Several recent dietary intervention studies examining the health effects of soy isoflavones allude to the potential importance of equol by establishing that maximal clinical responses to soy protein diets are observed in people who are good "equol-producers." It is now apparent that there are two distinct subpopulations of people and that "bacterio-typing" individuals for their ability to make equol may hold the clue to the effectiveness of soy protein diets in the treatment or prevention of hormone-dependent conditions. In reviewing the history of equol, its biological properties, factors influencing its formation and clinical data, we propose a new paradigm. The clinical effectiveness of soy protein in cardiovascular, bone and menopausal health may be a function of the ability to biotransform soy isoflavones to the more potent estrogenic isoflavone, equol. The failure to distinguish those subjects who are "equol-producers" from "nonequol producers" in previous clinical studies could plausibly explain the variance in reported data on the health benefits of soy.
          Bookmark
          • Record: found
          • Abstract: not found
          • Article: not found

          Proanthocyanidins and tannin-like compounds - nature, occurrence, dietary intake and effects on nutrition and health

            Bookmark

            Author and article information

            Journal
            The American Journal of Clinical Nutrition
            Oxford University Press (OUP)
            0002-9165
            1938-3207
            May 2004
            May 01 2004
            May 2004
            May 01 2004
            : 79
            : 5
            : 727-747
            10.1093/ajcn/79.5.727
            © 2004

            Comments

            Comment on this article