8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Extracting function from a beta-trefoil folding motif.

      Proceedings of the National Academy of Sciences of the United States of America
      Algorithms, Amino Acid Motifs, Binding Sites, DNA Mutational Analysis, Genomics, Humans, Interleukin-1beta, chemistry, Kinetics, Molecular Conformation, Protein Conformation, Protein Denaturation, Protein Folding, Protein Structure, Secondary, Receptors, Interleukin-1, Software

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite having remarkably similar three-dimensional structures and stabilities, IL-1beta promotes signaling, whereas IL-1Ra inhibits it. Their energy landscapes are similar and have coevolved to facilitate competitive binding to the IL-1 receptor. Nevertheless, we find that IL-1Ra folds faster than IL-1beta. A structural alignment of the proteins shows differences mainly in two loops, a beta-bulge of IL-1beta and a loop in IL-1Ra that interacts with residue K145 and connects beta-strands 11 and 12. Bioassays indicate that inserting the beta-bulge from IL-1beta confers partial signaling capability onto a K145D mutant of IL-1Ra. Based on the alignment, mutational assays and our computational folding results, we hypothesize that functional regions are not central to the beta-trefoil motif and cause slow folding. The IL-1beta beta-bulge facilitates activity and replacing it by the IL-1Ra beta-turn results in a hybrid protein that folds faster than IL-1beta. Inserting the beta11-beta12 connecting-loop, which aids inhibition, into either IL-1beta or the hybrid protein slows folding. Thus, regions that aid function (either through activity or inhibition) can be inferred from folding traps via structural differences. Mapping functional properties onto the numerous folds determined in structural genomics efforts is an area of intense interest. Our studies provide a systematic approach to mapping the functional genomics of a fold family.

          Related collections

          Author and article information

          Comments

          Comment on this article