22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Congenital Hyperinsulinism: Diagnosis and Treatment Update

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pancreatic β-cells are finely tuned to secrete insulin so that plasma glucose levels are maintained within a narrow physiological range (3.5-5.5 mmol/L). Hyperinsulinaemic hypoglycaemia (HH) is the inappropriate secretion of insulin in the presence of low plasma glucose levels and leads to severe and persistent hypoglycaemia in neonates and children. Mutations in 12 different key genes (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, UCP2, HNF4A, HNF1A, HK1, PGM1 and PMM2) that are involved in the regulation of insulin secretion from pancreatic β-cells have been described to be responsible for the underlying molecular mechanisms leading to congenital HH. In HH due to the inhibitory effect of insulin on lipolysis and ketogenesis there is suppressed ketone body formation in the presence of hypoglycaemia thus leading to increased risk of hypoglycaemic brain injury. Therefore, a prompt diagnosis and immediate management of HH is essential to avoid hypoglycaemic brain injury and long-term neurological complications in children. Advances in molecular genetics, imaging techniques ( 18F-DOPA positron emission tomography/computed tomography scanning), medical therapy and surgical advances (laparoscopic and open pancreatectomy) have changed the management and improved the outcome of patients with HH. This review article provides an overview to the background, clinical presentation, diagnosis, molecular genetics and therapy in children with different forms of HH.

          Related collections

          Most cited references171

          • Record: found
          • Abstract: found
          • Article: not found

          Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia.

          A mitochondrial protein called uncoupling protein (UCP1) plays an important role in generating heat and burning calories by creating a pathway that allows dissipation of the proton electrochemical gradient across the inner mitochondrial membrane in brown adipose tissue, without coupling to any other energy-consuming process. This pathway has been implicated in the regulation of body temperature, body composition and glucose metabolism. However, UCP1-containing brown adipose tissue is unlikely to be involved in weight regulation in adult large-size animals and humans living in a thermoneutral environment (one where an animal does not have to increase oxygen consumption or energy expenditure to lose or gain heat to maintain body temperature), as there is little brown adipose tissue present. We now report the discovery of a gene that codes for a novel uncoupling protein, designated UCP2, which has 59% amino-acid identity to UCP1, and describe properties consistent with a role in diabetes and obesity. In comparison with UCP1, UCP2 has a greater effect on mitochondrial membrane potential when expressed in yeast. Compared to UCP1, the gene is widely expressed in adult human tissues, including tissues rich in macrophages, and it is upregulated in white fat in response to fat feeding. Finally, UCP2 maps to regions of human chromosome 11 and mouse chromosome 7 that have been linked to hyperinsulinaemia and obesity. Our findings suggest that UCP2 has a unique role in energy balance, body weight regulation and thermoregulation and their responses to inflammatory stimuli.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young (MODY3)

            The disease non-insulin-dependent (type 2) diabetes mellitus (NIDDM) is characterized by abnormally high blood glucose resulting from a relative deficiency of insulin. It affects about 2% of the world's population and treatment of diabetes and its complications are an increasing health-care burden. Genetic factors are important in the aetiology of NIDDM, and linkage studies are starting to localize some of the genes that influence the development of this disorder. Maturity-onset diabetes of the young (MODY), a single-gene disorder responsible for 2-5% of NIDDM, is characterized by autosomal dominant inheritance and an age of onset of 25 years or younger. MODY genes have been localized to chromosomes 7, 12 and 20 (refs 5, 7, 8) and clinical studies indicate that mutations in these genes are associated with abnormal patterns of glucose-stimulated insulin secretion. The gene on chromosome 7 (MODY2) encodes the glycolytic enzyme glucokinases which plays a key role in generating the metabolic signal for insulin secretion and in integrating hepatic glucose uptake. Here we show that subjects with the MODY3-form of NIDDM have mutations in the gene encoding hepatocyte nuclear factor-1alpha (HNF-1alpha, which is encoded by the gene TCF1). HNF-1alpha is a transcription factor that helps in the tissue-specific regulation of the expression of several liver genes and also functions as a weak transactivator of the rat insulin-I gene.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone glucagon-like peptide 1.

              B Thorens (1992)
              Glucagon-like peptide 1 (GLP-1) is a hormone derived from the preproglucagon molecule and is secreted by intestinal L cells. It is the most potent stimulator of glucose-induced insulin secretion and also suppresses in vivo acid secretion by gastric glands. A cDNA for the GLP-1 receptor was isolated by transient expression of a rat pancreatic islet cDNA library into COS cells; this was followed by binding of radiolabeled GLP-1 and screening by photographic emulsion autoradiography. The receptor transfected into COS cells binds GLP-1 with high affinity and is coupled to activation of adenylate cyclase. The receptor binds specifically GLP-1 and does not bind peptides of related structure and similar function, such as glucagon, gastric inhibitory peptide, vasoactive intestinal peptide, or secretin. The receptor is 463 amino acids long and contains seven transmembrane domains. Sequence homology is found only with the receptors for secretin, calcitonin, and parathyroid hormone, which form a newly characterized family of G-coupled receptors.
                Bookmark

                Author and article information

                Journal
                J Clin Res Pediatr Endocrinol
                J Clin Res Pediatr Endocrinol
                JCRPE
                Journal of Clinical Research in Pediatric Endocrinology
                Galenos Publishing
                1308-5727
                1308-5735
                December 2017
                30 December 2017
                : 9
                : Suppl 2
                : 69-87
                Affiliations
                [1 ] Hacettepe University Faculty of Medicine, Department of Paediatric Endocrinology, Ankara, Turkey
                [2 ] Sidra Medical and Research Center, Clinic of Paediatric Medicine, Doha, Qatar
                Author notes
                * Address for Correspondence: Sidra Medical and Research Center, Clinic of Paediatric Medicine, Doha, Qatar Phone: +974-30322007 E-mail: khussain@ 123456sidra.org
                Article
                3066
                10.4274/jcrpe.2017.S007
                5790328
                29280746
                1b041a9f-1d57-451f-a38a-2469b2d503c8
                ©Copyright 2017 by Turkish Pediatric Endocrinology and Diabetes Society The Journal of Clinical Research in Pediatric Endocrinology published by Galenos Publishing House.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 December 2017
                : 19 December 2017
                Categories
                Review

                Pediatrics
                hyperinsulinaemic hypoglycaemia,congenital hyperinsulinaemia, children,diffuse congenital hyperinsulinism,focal congenital hyperinsulinism,sirolimus

                Comments

                Comment on this article