11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Antioxidant activity of vitamin C in iron-overloaded human plasma.

      The Journal of Biological Chemistry
      Adult, Antioxidants, metabolism, Ascorbic Acid, blood, Bleomycin, Blood Proteins, Cholesterol Esters, Chromatography, High Pressure Liquid, Humans, Infant, Infant, Newborn, Infant, Premature, Iron, Iron Overload, Lipids, Oxidation-Reduction

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vitamin C (ascorbic acid, AA) can act as an antioxidant or a pro-oxidant in vitro, depending on the absence or the presence, respectively, of redox-active metal ions. Some adults with iron-overload and some premature infants have potentially redox-active, bleomycin-detectable iron (BDI) in their plasma. Thus, it has been hypothesized that the combination of AA and BDI causes oxidative damage in vivo. We found that plasma of preterm infants contains high levels of AA and F2-isoprostanes, stable lipid peroxidation end products. However, F2-isoprostane levels were not different between those infants with BDI (138 +/- 51 pg/ml, n = 19) and those without (126 +/- 41 pg/ml, n = 10), and the same was true for protein carbonyls, a marker of protein oxidation (0.77 +/- 0.31 and 0.68 +/- 0.13 nmol/mg protein, respectively). Incubation of BDI-containing plasma from preterm infants did not result in detectable lipid hydroperoxide formation (10% of its initial concentration. Finally, when iron was added to plasma devoid of AA, lipid hydroperoxides were formed immediately, whereas endogenous and exogenous AA delayed the onset of iron-induced lipid peroxidation in a dose-dependent manner. These findings demonstrate that in iron-overloaded plasma, AA acts an antioxidant toward lipids. Furthermore, our data do not support the hypothesis that the combination of high plasma concentrations of AA and BDI, or BDI alone, causes oxidative damage to lipids and proteins in vivo.

          Related collections

          Author and article information

          Comments

          Comment on this article