3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Genome-wide Association Study of Creativity Reveals Genetic Overlap With Psychiatric Disorders, Risk Tolerance, and Risky Behaviors

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Creativity represents one of the most important and partially heritable human characteristics, yet little is known about its genetic basis. Epidemiological studies reveal associations between creativity and psychiatric disorders as well as multiple personality and behavioral traits. To test whether creativity and these disorders or traits share genetic basis, we performed genome-wide association studies (GWAS) followed by polygenic risk score (PRS) analyses. Two cohorts of Han Chinese subjects (4,834 individuals in total) aged 18–45 were recruited for creativity measurement using typical performance test. After exclusion of the outliers with significantly deviated creativity scores and low-quality genotyping results, 4,664 participants were proceeded for GWAS. We conducted PRS analyses using both the classical pruning and thresholding (P+T) method and the LDpred method. The extent of polygenic risk was estimated through linear regression adjusting for the top 3 genotyping principal components. R2 was used as a measurement of the explained variance. PRS analyses demonstrated significantly positive genetic overlap, respectively, between creativity with schizophrenia ((P+T) method: R2(max) ~ .196%, P = .00245; LDpred method: R2(max) ~ .226%, P = .00114), depression ((P+T) method: R2(max) ~ .178%, P = .00389; LDpred method: R2(max) ~ .093%, P = .03675), general risk tolerance ((P+T) method: R2(max) ~ .177%, P = .00399; LDpred method: R2(max) ~ .305%, P = .00016), and risky behaviors ((P+T) method: R2(max) ~ .187%, P = .00307; LDpred method: R2(max) ~ .155%, P = .00715). Our results suggest that human creativity is probably a polygenic trait affected by numerous variations with tiny effects. Genetic variations that predispose to psychiatric disorders and risky behaviors may underlie part of the genetic basis of creativity, confirming the epidemiological associations between creativity and these traits.

          Related collections

          Most cited references 31

          • Record: found
          • Abstract: found
          • Article: not found

          Childhood intelligence is heritable, highly polygenic and associated with FNBP1L.

          Intelligence in childhood, as measured by psychometric cognitive tests, is a strong predictor of many important life outcomes, including educational attainment, income, health and lifespan. Results from twin, family and adoption studies are consistent with general intelligence being highly heritable and genetically stable throughout the life course. No robustly associated genetic loci or variants for childhood intelligence have been reported. Here, we report the first genome-wide association study (GWAS) on childhood intelligence (age range 6-18 years) from 17,989 individuals in six discovery and three replication samples. Although no individual single-nucleotide polymorphisms (SNPs) were detected with genome-wide significance, we show that the aggregate effects of common SNPs explain 22-46% of phenotypic variation in childhood intelligence in the three largest cohorts (P=3.9 × 10(-15), 0.014 and 0.028). FNBP1L, previously reported to be the most significantly associated gene for adult intelligence, was also significantly associated with childhood intelligence (P=0.003). Polygenic prediction analyses resulted in a significant correlation between predictor and outcome in all replication cohorts. The proportion of childhood intelligence explained by the predictor reached 1.2% (P=6 × 10(-5)), 3.5% (P=10(-3)) and 0.5% (P=6 × 10(-5)) in three independent validation cohorts. Given the sample sizes, these genetic prediction results are consistent with expectations if the genetic architecture of childhood intelligence is like that of body mass index or height. Our study provides molecular support for the heritability and polygenic nature of childhood intelligence. Larger sample sizes will be required to detect individual variants with genome-wide significance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Creative innovation: possible brain mechanisms.

              This article reviews and develops some theories about the neurobiological basis of creative innovation (CI). CI is defined as the ability to understand and express novel orderly relationships. A high level of general intelligence, domain-specific knowledge and special skills are necessary components of creativity. Specialized knowledge is stored in specific portions of the temporal and parietal lobes. Some anatomic studies suggest that talented people might have alterations of specific regions of the posterior neocortical architecture, but further systematic studies are needed. Intelligence, knowledge and special skills, however, are not sufficient for CI. Developing alternative solutions or divergent thinking has been posited to be a critical element of CI, and clinical as well as functional imaging studies suggest that the frontal lobes are important for these activities. The frontal lobes have strong connections with the polymodal and supramodal regions of the temporal and parietal lobes where concepts and knowledge are stored. These connections might selectively inhibit and activate portions of posterior neocortex and thus be important for developing alternative solutions. Although extensive knowledge and divergent thinking together are critical for creativity they alone are insufficient for allowing a person to find the thread that unites. Finding this thread might require the binding of different forms of knowledge, stored in separate cortical modules that have not been previously associated. Thus, CI might require the co-activation and communication between regions of the brain that ordinarily are not strongly connected. The observations that CI often occurs during levels of low arousal and that many people with depression are creative suggests that alterations of neurotransmitters such as norepinephrine might be important in CI. High levels of norepinephrine, produced by high rates of locus coeruleus firing, restrict the breadth of concept representations and increase the signal to noise ratio, but low levels of norepinephrine shift the brain toward intrinsic neuronal activation with an increase in the size of distributed concept representations and co-activation across modular networks. In addition to being important in divergent thinking, the frontal lobes are also the primary cortical region that controls the locus coeruleus-norepinephrine system. Thus creative people may be endowed with brains that are capable of storing extensive specialized knowledge in their temporoparietal cortex, be capable of frontal mediated divergent thinking and have a special ability to modulate the frontal lobe-locus coeruleus (norepinephrine) system, such that during creative innovation cerebral levels of norepinephrine diminish, leading to the discovery of novel orderly relationships.
                Bookmark

                Author and article information

                Journal
                Schizophrenia Bulletin
                Oxford University Press (OUP)
                0586-7614
                1745-1701
                March 05 2020
                March 05 2020
                Affiliations
                [1 ]Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
                [2 ]Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
                [3 ]Faculty of Psychology, Beijing Normal University, Beijing, China
                [4 ]State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
                Article
                10.1093/schbul/sbaa025
                © 2020

                Comments

                Comment on this article