17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Combined administration of anisodamine and neostigmine rescued acute lethal crush syndrome through α7nAChR-dependent JAK2-STAT3 signaling

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Previously we showed that Ani (anisodamine)/Neo (neostigmine) combination produced anti-shock effect via activating α7 nicotinic acetylcholine receptor (α7nAChR). In this study, we aim to investigate the therapeutic effect and underlying mechanisms of Ani/Neo combination in acute lethal crush syndrome (CS). In rat and rabbit CS models, Ani/Neo combination increased the 24 h survival rates, improved hemodynamics and decreased the levels of creatine kinase, MB isoenzyme of creatine kinase, blood urea nitrogen, creatinine, K + in serum. It also decreased the levels of H 2O 2, myeloperoxidase (MPO) and nitric oxide (NO) in serum and compressed muscle in rat CS model. In wild-type (WT) mice with CS, Ani/Neo combination increased 24 h survival rate and decreased the levels of H 2O 2, MPO, NO, TNFα, IL-6 and IL-10 in compressed muscle. These effects were attenuated by α7nAChR knockout (KO). Moreover, Ani/Neo combination prevented the decrease of phosphorylation of Janus kinase 2 (JAK2) and phosphorylation of signal transducer and activator of transcription 3 (STAT3) induced by CS. These effects of Ani/Neo in CS mice were cancelled by methyllycaconitine (α7nAChR antagonist) and α7nAChR KO. Collectively, our results demonstrate that Ani/Neo combination could produce therapeutic effects in CS. The underlying mechanism involves the activation of α7nAChR-dependent JAK2-STAT3 signaling pathway.

          Related collections

          Most cited references 33

          • Record: found
          • Abstract: found
          • Article: not found

          Recognition by ELAM-1 of the sialyl-Lex determinant on myeloid and tumor cells.

          Endothelial leukocyte adhesion molecule-1 (ELAM-1) is an endothelial cell adhesion molecule that allows myeloid cells to attach to the walls of blood vessels adjacent to sites of inflammation. ELAM-1 recognizes the sialyl-Lewis X (sialyl-Lex) determinant, NeuAc alpha 2-3Gal beta 1-4(Fuc alpha 1-3)GlcNAc-, a granulocyte carbohydrate also found on the surface of some tumor cell lines. Binding of myeloid cells to soluble ELAM-1 is inhibited by a monoclonal antibody recognizing sialyl-Lex or by proteins bearing sialyl-Lex, some of which may participate in humoral regulation of myeloid cell adhesion. Stimulated granulocytes also release an inhibitor of ELAM-1 binding that can be selectively adsorbed by monoclonal antibody to sialyl-Lex.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            MicroRNA-124 mediates the cholinergic anti-inflammatory action through inhibiting the production of pro-inflammatory cytokines

            The vagus nerve can control inflammatory response through a 'cholinergic anti-inflammatory pathway', which is mediated by the α7-nicotinic acetylcholine receptor (α7nAChR) on macrophages. However, the intracellular mechanisms that link α7nAChR activation and pro-inflammatory cytokine production remain not well understood. In this study, we found that miR-124 is upregulated by cholinergic agonists in LPS-exposed cells and mice. Utilizing miR-124 mimic and siRNA knockdown, we demonstrated that miR-124 is a critical mediator for the cholinergic anti-inflammatory action. Furthermore, our data indicated that miR-124 modulates LPS-induced cytokine production by targeting signal transducer and activator of transcription 3 (STAT3) to decrease IL-6 production and TNF-α converting enzyme (TACE) to reduce TNF-α release. These results also indicate that miR-124 is a potential therapeutic target for the treatment of inflammatory diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neural regulation of hematopoiesis, inflammation, and cancer.

              Although the function of the autonomic nervous system (ANS) in mediating the flight-or-fight response was recognized decades ago, the crucial role of peripheral innervation in regulating cell behavior and response to the microenvironment has only recently emerged. In the hematopoietic system, the ANS regulates stem cell niche homeostasis and regeneration and fine-tunes the inflammatory response. Additionally, emerging data suggest that cancer cells take advantage of innervating neural circuitry to promote their progression. These new discoveries outline the need to redesign therapeutic strategies to target this underappreciated stromal constituent. Here, we review the importance of neural signaling in hematopoietic homeostasis, inflammation, and cancer.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                22 November 2016
                2016
                : 6
                Affiliations
                [1 ]Department of Pharmacology, School of Pharmacy, Second Military Medical University , Shanghai, China
                [2 ]Cardiovascular Research Center, Temple University School of Medicine , Philadelphia, PA 19140, USA
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep37709
                10.1038/srep37709
                5118690
                27874086
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                Categories
                Article

                Uncategorized

                Comments

                Comment on this article