33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interplay between ultrastructural findings and atherothrombotic complications in type 2 diabetes mellitus

      review-article
      ,
      Cardiovascular Diabetology
      BioMed Central
      Diabetes, Morphology, Platelets, Fibrin, Erythrocytes, Atherosclerosis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Accelerated atherosclerosis is the main underlying factor contributing to the high risk of atherothrombotic events in patients with diabetes mellitus and atherothrombotic complications are the main cause of mortality. Like with many bodily systems, pathology is observed when the normal processes are exaggerated or uncontrolled. This applies to the processes of coagulation and thrombosis as well. In diabetes, in fact, the balance between prothrombotic and fibrinolytic factors is impaired and thus the scale is tipped towards a prothrombotic and hypofibrinolytic milieu, which in association with the vascular changes accompanying plaque formation and ruptures, increases the prevalence of ischaemic events such as angina and myocardial infarction. Apart from traditional, modifiable risk factors for cardiovascular disease like hypertension, smoking, elevated cholesterol; rheological properties, endogenous fibrinolysis and impaired platelet activity are rapidly gaining significance in the pathogenesis of atherosclerosis especially in diabetic subjects. Blood clot formation represents the last step in the athero-thrombotic process, and the structure of the fibrin network has a role in determining predisposition to cardiovascular disease. It is no surprise that just like platelets and fibrin networks, erythrocytes have been shown to play a role in coagulation as well. This is in striking contrast to their traditional physiological role of oxygen transport. In fact, emerging evidence suggests that erythrocytes enhance functional coagulation properties and platelet aggregation. Among the spectrum of haematological abnormalities in diabetes, erythrocyte aggregation and decreased deformability of erythrocytes predominate. More importantly, they are implicated in the pathogenesis of microvascular complications of diabetes. The morphology of platelets, fibrin networks and erythrocytes are thus essential role players in unravelling the pathogenesis of cardiovascular complications in diabetic subjects.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: not found
          • Article: not found

          Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Platelet activation and blood coagulation.

            Platelet activation and blood coagulation are complementary, mutually dependent processes in haemostasis and thrombosis. Platelets interact with several coagulation factors, while the coagulation product thrombin is a potent platelet-activating agonist. Activated platelets come in a procoagulant state after a prolonged elevation in cytosolic [Ca2+]i. Such platelets, e.g. when adhering to collagen via glycoprotein VI, expose phosphatidylserine (PS) at their outer surface and produce (PS-exposing) membrane blebs and microvesicles. Inhibition of aminophospholipid translocase and activation of phospholipid scramblase mediate the exposure of PS, whereas calpain-mediated protein cleavage leads to membrane blebbing and vesiculation. Surface-exposed PS strongly propagates the coagulation process by facilitating the assembly and activation of tenase and prothrombinase complexes. Factor IXa and platelet-bound factor Va support these activities. In addition, platelets can support the initiation phase of coagulation by providing binding sites for prothrombin and factor XI. They thereby take over the initiating role of tissue factor and factor VIIa in coagulation activation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cell-derived microparticles in haemostasis and vascular medicine.

              Considerable interest for cell-derived microparticles has emerged, pointing out their essential role in haemostatic response and their potential as disease markers, but also their implication in a wide range of physiological and pathological processes. They derive from different cell types including platelets - the main source of microparticles - but also from red blood cells, leukocytes and endothelial cells, and they circulate in blood. Despite difficulties encountered in analyzing them and disparities of results obtained with a wide range of methods, microparticle generation processes are now better understood. However, a generally admitted definition of microparticles is currently lacking. For all these reasons we decided to review the literature regarding microparticles in their widest definition, including ectosomes and exosomes, and to focus mainly on their role in haemostasis and vascular medicine.
                Bookmark

                Author and article information

                Contributors
                prashilla.soma@up.ac.za
                resia.pretorius@up.ac.za
                Journal
                Cardiovasc Diabetol
                Cardiovasc Diabetol
                Cardiovascular Diabetology
                BioMed Central (London )
                1475-2840
                31 July 2015
                31 July 2015
                2015
                : 14
                : 96
                Affiliations
                Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
                Author information
                http://orcid.org/0000-0002-9108-2384
                Article
                261
                10.1186/s12933-015-0261-9
                4521497
                26228646
                1b36e2bc-1bdd-42be-a574-0011c07fa039
                © Soma and Pretorius. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 2 July 2015
                : 19 July 2015
                Categories
                Review
                Custom metadata
                © The Author(s) 2015

                Endocrinology & Diabetes
                diabetes,morphology,platelets,fibrin,erythrocytes,atherosclerosis
                Endocrinology & Diabetes
                diabetes, morphology, platelets, fibrin, erythrocytes, atherosclerosis

                Comments

                Comment on this article