7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Deep Learning in Medical Imaging

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The artificial neural network (ANN), one of the machine learning (ML) algorithms, inspired by the human brain system, was developed by connecting layers with artificial neurons. However, due to the low computing power and insufficient learnable data, ANN has suffered from overfitting and vanishing gradient problems for training deep networks. The advancement of computing power with graphics processing units and the availability of large data acquisition, deep neural network outperforms human or other ML capabilities in computer vision and speech recognition tasks. These potentials are recently applied to healthcare problems, including computer-aided detection/diagnosis, disease prediction, image segmentation, image generation, etc. In this review article, we will explain the history, development, and applications in medical imaging

          Related collections

          Most cited references56

          • Record: found
          • Abstract: not found
          • Conference Proceedings: not found

          Image-to-Image Translation with Conditional Adversarial Networks

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Extracting and composing robust features with denoising autoencoders

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

              State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet and Fast R-CNN have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features---using the recently popular terminology of neural networks with 'attention' mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model, our detection system has a frame rate of 5fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available. Extended tech report
                Bookmark

                Author and article information

                Journal
                Neurospine
                Neurospine
                NS
                Neurospine
                Korean Spinal Neurosurgery Society
                2586-6583
                2586-6591
                December 2019
                31 December 2019
                : 16
                : 4
                : 657-668
                Affiliations
                [1 ]Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
                [2 ]Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
                Author notes
                Corresponding Author Namkug Kim https://orcid.org/0000-0002-3438-2217 Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea Tel: +82-2-3010-6573 E-mail: namkugkim@ 123456gmail.com
                Author information
                http://orcid.org/0000-0002-3438-2217
                Article
                ns-1938396-198
                10.14245/ns.1938396.198
                6945006
                31905454
                1b39df52-f764-493a-b0fc-678032f8192b
                Copyright © 2019 by the Korean Spinal Neurosurgery Society

                This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 November 2019
                : 10 December 2019
                : 12 December 2019
                Categories
                Review Article

                artificial intelligence,deep learning,machine learning,precision medicine,radiology

                Comments

                Comment on this article