68
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea ( Pisum sativum L.)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Field pea ( Pisum sativum L.) is a self-pollinating, diploid, cool-season food legume. Crop production is constrained by multiple biotic and abiotic stress factors, including salinity, that cause reduced growth and yield. Recent advances in genomics have permitted the development of low-cost high-throughput genotyping systems, allowing the construction of saturated genetic linkage maps for identification of quantitative trait loci (QTLs) associated with traits of interest. Genetic markers in close linkage with the relevant genomic regions may then be implemented in varietal improvement programs.

          Results

          In this study, single nucleotide polymorphism (SNP) markers associated with expressed sequence tags (ESTs) were developed and used to generate comprehensive linkage maps for field pea. From a set of 36,188 variant nucleotide positions detected through in silico analysis, 768 were selected for genotyping of a recombinant inbred line (RIL) population. A total of 705 SNPs (91.7%) successfully detected segregating polymorphisms. In addition to SNPs, genomic and EST-derived simple sequence repeats (SSRs) were assigned to the genetic map in order to obtain an evenly distributed genome-wide coverage. Sequences associated with the mapped molecular markers were used for comparative genomic analysis with other legume species. Higher levels of conserved synteny were observed with the genomes of Medicago truncatula Gaertn. and chickpea ( Cicer arietinum L.) than with soybean ( Glycine max [L.] Merr.), Lotus japonicus L. and pigeon pea ( Cajanus cajan [L.] Millsp.) . Parents and RIL progeny were screened at the seedling growth stage for responses to salinity stress, imposed by addition of NaCl in the watering solution at a concentration of 18 dS m -1. Salinity-induced symptoms showed normal distribution, and the severity of the symptoms increased over time. QTLs for salinity tolerance were identified on linkage groups Ps III and VII, with flanking SNP markers suitable for selection of resistant cultivars. Comparison of sequences underpinning these SNP markers to the M. truncatula genome defined genomic regions containing candidate genes associated with saline stress tolerance .

          Conclusion

          The SNP assays and associated genetic linkage maps developed in this study permitted identification of salinity tolerance QTLs and candidate genes. This constitutes an important set of tools for marker-assisted selection (MAS) programs aimed at performance enhancement of field pea cultivars.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          World salinization with emphasis on Australia.

          Salinization is the accumulation of water-soluble salts in the soil solum or regolith to a level that impacts on agricultural production, environmental health, and economic welfare. Salt-affected soils occur in more than 100 countries of the world with a variety of extents, nature, and properties. No climatic zone in the world is free from salinization, although the general perception is focused on arid and semi-arid regions. Salinization is a complex process involving the movement of salts and water in soils during seasonal cycles and interactions with groundwater. While rainfall, aeolian deposits, mineral weathering, and stored salts are the sources of salts, surface and groundwaters can redistribute the accumulated salts and may also provide additional sources. Sodium salts dominate in many saline soils of the world, but salts of other cations such as calcium, magnesium, and iron are also found in specific locations. Different types of salinization with a prevalence of sodium salts affect about 30% of the land area in Australia. While more attention is given to groundwater-associated salinity and irrigation salinity, which affects about 16% of the agricultural area, recent investigations suggest that 67% of the agricultural area has a potential for "transient salinity", a type of non-groundwater-associated salinity. Agricultural soils in Australia, being predominantly sodic, accumulate salts under seasonal fluctuations and have multiple subsoil constraints such as alkalinity, acidity, sodicity, and toxic ions. This paper examines soil processes that dictate the exact edaphic environment upon which root functions depend and can help in research on plant improvement.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Genome Structure of the Legume, Lotus japonicus

            The legume Lotus japonicus has been widely used as a model system to investigate the genetic background of legume-specific phenomena such as symbiotic nitrogen fixation. Here, we report structural features of the L. japonicus genome. The 315.1-Mb sequences determined in this and previous studies correspond to 67% of the genome (472 Mb), and are likely to cover 91.3% of the gene space. Linkage mapping anchored 130-Mb sequences onto the six linkage groups. A total of 10 951 complete and 19 848 partial structures of protein-encoding genes were assigned to the genome. Comparative analysis of these genes revealed the expansion of several functional domains and gene families that are characteristic of L. japonicus. Synteny analysis detected traces of whole-genome duplication and the presence of synteny blocks with other plant genomes to various degrees. This study provides the first opportunity to look into the complex and unique genetic system of legumes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers.

              Pigeonpea is an important legume food crop grown primarily by smallholder farmers in many semi-arid tropical regions of the world. We used the Illumina next-generation sequencing platform to generate 237.2 Gb of sequence, which along with Sanger-based bacterial artificial chromosome end sequences and a genetic map, we assembled into scaffolds representing 72.7% (605.78 Mb) of the 833.07 Mb pigeonpea genome. Genome analysis predicted 48,680 genes for pigeonpea and also showed the potential role that certain gene families, for example, drought tolerance-related genes, have played throughout the domestication of pigeonpea and the evolution of its ancestors. Although we found a few segmental duplication events, we did not observe the recent genome-wide duplication events observed in soybean. This reference genome sequence will facilitate the identification of the genetic basis of agronomically important traits, and accelerate the development of improved pigeonpea varieties that could improve food security in many developing countries.
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Plant Biol
                BMC Plant Biol
                BMC Plant Biology
                BioMed Central
                1471-2229
                2013
                17 October 2013
                : 13
                : 161
                Affiliations
                [1 ]Department of Environment and Primary Industries, Biosciences Research Division, Grains Innovation Park, PMB 260, Horsham, VIC 3401, Australia
                [2 ]Melbourne School of Land and Environment, University of Melbourne, Melbourne, VIC 3010, Australia
                [3 ]Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBioscience, 5 Ring Road, La Trobe University Research and Development Park, Bundoora, VIC 3083, Australia
                [4 ]La Trobe University, Bundoora, VIC 3086, Australia
                Article
                1471-2229-13-161
                10.1186/1471-2229-13-161
                4015884
                24134188
                1b5a015f-fcfa-43d1-8a43-9b56f9fd2c2c
                Copyright © 2013 Leonforte et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 August 2013
                : 13 October 2013
                Categories
                Research Article

                Plant science & Botany
                grain legume,genetic marker,trait dissection,comparative genomics,abiotic stress,breeding

                Comments

                Comment on this article