Blog
About

8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Toward FRP-Based Brain-Machine Interfaces—Single-Trial Classification of Fixation-Related Potentials

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The co-registration of eye tracking and electroencephalography provides a holistic measure of ongoing cognitive processes. Recently, fixation-related potentials have been introduced to quantify the neural activity in such bi-modal recordings. Fixation-related potentials are time-locked to fixation onsets, just like event-related potentials are locked to stimulus onsets. Compared to existing electroencephalography-based brain-machine interfaces that depend on visual stimuli, fixation-related potentials have the advantages that they can be used in free, unconstrained viewing conditions and can also be classified on a single-trial level. Thus, fixation-related potentials have the potential to allow for conceptually different brain-machine interfaces that directly interpret cortical activity related to the visual processing of specific objects. However, existing research has investigated fixation-related potentials only with very restricted and highly unnatural stimuli in simple search tasks while participant’s body movements were restricted. We present a study where we relieved many of these restrictions while retaining some control by using a gaze-contingent visual search task. In our study, participants had to find a target object out of 12 complex and everyday objects presented on a screen while the electrical activity of the brain and eye movements were recorded simultaneously. Our results show that our proposed method for the classification of fixation-related potentials can clearly discriminate between fixations on relevant, non-relevant and background areas. Furthermore, we show that our classification approach generalizes not only to different test sets from the same participant, but also across participants. These results promise to open novel avenues for exploiting fixation-related potentials in electroencephalography-based brain-machine interfaces and thus providing a novel means for intuitive human-machine interaction.

          Related collections

          Most cited references 17

          • Record: found
          • Abstract: found
          • Article: not found

          Eye movements in natural behavior.

          The classic experiments of Yarbus over 50 years ago revealed that saccadic eye movements reflect cognitive processes. But it is only recently that three separate advances have greatly expanded our understanding of the intricate role of eye movements in cognitive function. The first is the demonstration of the pervasive role of the task in guiding where and when to fixate. The second has been the recognition of the role of internal reward in guiding eye and body movements, revealed especially in neurophysiological studies. The third important advance has been the theoretical developments in the fields of reinforcement learning and graphic simulation. All of these advances are proving crucial for understanding how behavioral programs control the selection of visual information.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials.

            This paper describes the development and testing of a system whereby one can communicate through a computer by using the P300 component of the event-related brain potential (ERP). Such a system may be used as a communication aid by individuals who cannot use any motor system for communication (e.g., 'locked-in' patients). The 26 letters of the alphabet, together with several other symbols and commands, are displayed on a computer screen which serves as the keyboard or prosthetic device. The subject focuses attention successively on the characters he wishes to communicate. The computer detects the chosen character on-line and in real time. This detection is achieved by repeatedly flashing rows and columns of the matrix. When the elements containing the chosen character are flashed, a P300 is elicited, and it is this P300 that is detected by the computer. We report an analysis of the operating characteristics of the system when used with normal volunteers, who took part in 2 experimental sessions. In the first session (the pilot study/training session) subjects attempted to spell a word and convey it to a voice synthesizer for production. In the second session (the analysis of the operating characteristics of the system) subjects were required simply to attend to individual letters of a word for a specific number of trials while data were recorded for off-line analysis. The analyses suggest that this communication channel can be operated accurately at the rate of 0.20 bits/sec. In other words, under the conditions we used, subjects can communicate 12.0 bits, or 2.3 characters, per min.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tracking the mind during reading: the influence of past, present, and future words on fixation durations.

              Reading requires the orchestration of visual, attentional, language-related, and oculomotor processing constraints. This study replicates previous effects of frequency, predictability, and length of fixated words on fixation durations in natural reading and demonstrates new effects of these variables related to 144 sentences. Such evidence for distributed processing of words across fixation durations challenges psycholinguistic immediacy-of-processing and eye-mind assumptions. Most of the time the mind processes several words in parallel at different perceptual and cognitive levels. Eye movements can help to unravel these processes. ((c) 2006 APA, all rights reserved).
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                2016
                26 January 2016
                : 11
                : 1
                Affiliations
                [1 ]Center of Excellence Cognitive Interaction Technology CITEC, Bielefeld University, Bielefeld, Germany
                [2 ]Neuroinformatics Group, Technical Faculty, Bielefeld University, Bielefeld, Germany
                [3 ]Neurocognition and Action Group, Faculty of Psychology, Bielefeld University, Bielefeld, Germany
                [4 ]Department of Computer Science, Verona University, Verona, Italy
                University of Electronic Science and Technology of China, CHINA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AF KE GM. Performed the experiments: GM AF. Analyzed the data: AF GM. Wrote the paper: AF KE HR. Developed and implemented the software used in analysis: AF GM.

                Article
                PONE-D-15-35106
                10.1371/journal.pone.0146848
                4727887
                26812487
                © 2016 Finke et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                Page count
                Figures: 7, Tables: 0, Pages: 19
                Product
                Funding
                This work was supported by Federal Ministry of Education and Research (BMBF, http://www.bmbf.de/en/), grant no. 16SV7275K (KE). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Research and Analysis Methods
                Bioassays and Physiological Analysis
                Electrophysiological Techniques
                Brain Electrophysiology
                Electroencephalography
                Biology and Life Sciences
                Physiology
                Electrophysiology
                Neurophysiology
                Brain Electrophysiology
                Electroencephalography
                Medicine and Health Sciences
                Physiology
                Electrophysiology
                Neurophysiology
                Brain Electrophysiology
                Electroencephalography
                Biology and Life Sciences
                Neuroscience
                Neurophysiology
                Brain Electrophysiology
                Electroencephalography
                Biology and Life Sciences
                Neuroscience
                Brain Mapping
                Electroencephalography
                Medicine and Health Sciences
                Diagnostic Medicine
                Clinical Neurophysiology
                Electroencephalography
                Research and Analysis Methods
                Imaging Techniques
                Neuroimaging
                Electroencephalography
                Biology and Life Sciences
                Neuroscience
                Neuroimaging
                Electroencephalography
                Biology and Life Sciences
                Anatomy
                Head
                Eyes
                Medicine and Health Sciences
                Anatomy
                Head
                Eyes
                Biology and Life Sciences
                Anatomy
                Ocular System
                Eyes
                Medicine and Health Sciences
                Anatomy
                Ocular System
                Eyes
                Biology and Life Sciences
                Neuroscience
                Sensory Perception
                Vision
                Biology and Life Sciences
                Psychology
                Sensory Perception
                Vision
                Social Sciences
                Psychology
                Sensory Perception
                Vision
                Biology and Life Sciences
                Physiology
                Sensory Physiology
                Visual System
                Eye Movements
                Medicine and Health Sciences
                Physiology
                Sensory Physiology
                Visual System
                Eye Movements
                Biology and Life Sciences
                Neuroscience
                Sensory Systems
                Visual System
                Eye Movements
                Biology and Life Sciences
                Neuroscience
                Cognitive Science
                Cognition
                Research and Analysis Methods
                Bioassays and Physiological Analysis
                Electrophysiological Techniques
                Brain Electrophysiology
                Electroencephalography
                Event-Related Potentials
                Biology and Life Sciences
                Physiology
                Electrophysiology
                Neurophysiology
                Brain Electrophysiology
                Electroencephalography
                Event-Related Potentials
                Medicine and Health Sciences
                Physiology
                Electrophysiology
                Neurophysiology
                Brain Electrophysiology
                Electroencephalography
                Event-Related Potentials
                Biology and Life Sciences
                Neuroscience
                Neurophysiology
                Brain Electrophysiology
                Electroencephalography
                Event-Related Potentials
                Biology and Life Sciences
                Neuroscience
                Brain Mapping
                Electroencephalography
                Event-Related Potentials
                Medicine and Health Sciences
                Diagnostic Medicine
                Clinical Neurophysiology
                Electroencephalography
                Event-Related Potentials
                Research and Analysis Methods
                Imaging Techniques
                Neuroimaging
                Electroencephalography
                Event-Related Potentials
                Biology and Life Sciences
                Neuroscience
                Neuroimaging
                Electroencephalography
                Event-Related Potentials
                Engineering and Technology
                Signal Processing
                Signal Filtering
                Physical Sciences
                Mathematics
                Probability Theory
                Random Variables
                Covariance
                Custom metadata
                All anonymized raw data files are available from the PUB database of Bielefeld University (DOI 10.4119/unibi/2763344).

                Uncategorized

                Comments

                Comment on this article