+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Chironomus tentans genome sequence and the organization of the Balbiani ring genes

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          The polytene nuclei of the dipteran Chironomus tentans ( Ch. tentans) with their Balbiani ring (BR) genes constitute an exceptional model system for studies of the expression of endogenous eukaryotic genes. Here, we report the first draft genome of Ch. tentans and characterize its gene expression machineries and genomic architecture of the BR genes.


          The genome of Ch. tentans is approximately 200 Mb in size, and has a low GC content (31%) and a low repeat fraction (15%) compared to other Dipteran species. Phylogenetic inference revealed that Ch. tentans is a sister clade to mosquitoes, with a split 150–250 million years ago. To characterize the Ch. tentans gene expression machineries, we identified potential orthologus sequences to more than 600 Drosophila melanogaster ( D. melanogaster) proteins involved in the expression of protein-coding genes. We report novel data on the organization of the BR gene loci, including a novel putative BR gene, and we present a model for the organization of chromatin bundles in the BR2 puff based on genic and intergenic in situ hybridizations.


          We show that the molecular machineries operating in gene expression are largely conserved between Ch. tentans and D. melanogaster, and we provide enhanced insight into the organization and expression of the BR genes. Our data strengthen the generality of the BR genes as a unique model system and provide essential background for in-depth studies of the biogenesis of messenger ribonucleoprotein complexes.

          Electronic supplementary material

          The online version of this article (doi:10.1186/1471-2164-15-819) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references 66

          • Record: found
          • Abstract: found
          • Article: not found

          Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data

          Massively-parallel cDNA sequencing has opened the way to deep and efficient probing of transcriptomes. Current approaches for transcript reconstruction from such data often rely on aligning reads to a reference genome, and are thus unsuitable for samples with a partial or missing reference genome. Here, we present the Trinity methodology for de novo full-length transcriptome reconstruction, and evaluate it on samples from fission yeast, mouse, and whitefly – an insect whose genome has not yet been sequenced. Trinity fully reconstructs a large fraction of the transcripts present in the data, also reporting alternative splice isoforms and transcripts from recently duplicated genes. In all cases, Trinity performs better than other available de novo transcriptome assembly programs, and its sensitivity is comparable to methods relying on genome alignments. Our approach provides a unified and general solution for transcriptome reconstruction in any sample, especially in the complete absence of a reference genome.
            • Record: found
            • Abstract: found
            • Article: not found

            RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.

            RAxML-VI-HPC (randomized axelerated maximum likelihood for high performance computing) is a sequential and parallel program for inference of large phylogenies with maximum likelihood (ML). Low-level technical optimizations, a modification of the search algorithm, and the use of the GTR+CAT approximation as replacement for GTR+Gamma yield a program that is between 2.7 and 52 times faster than the previous version of RAxML. A large-scale performance comparison with GARLI, PHYML, IQPNNI and MrBayes on real data containing 1000 up to 6722 taxa shows that RAxML requires at least 5.6 times less main memory and yields better trees in similar times than the best competing program (GARLI) on datasets up to 2500 taxa. On datasets > or =4000 taxa it also runs 2-3 times faster than GARLI. RAxML has been parallelized with MPI to conduct parallel multiple bootstraps and inferences on distinct starting trees. The program has been used to compute ML trees on two of the largest alignments to date containing 25,057 (1463 bp) and 2182 (51,089 bp) taxa, respectively.
              • Record: found
              • Abstract: found
              • Article: not found

              Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences.

              In 2001 and 2002, we published two papers (Bioinformatics, 17, 282-283, Bioinformatics, 18, 77-82) describing an ultrafast protein sequence clustering program called cd-hit. This program can efficiently cluster a huge protein database with millions of sequences. However, the applications of the underlying algorithm are not limited to only protein sequences clustering, here we present several new programs using the same algorithm including cd-hit-2d, cd-hit-est and cd-hit-est-2d. Cd-hit-2d compares two protein datasets and reports similar matches between them; cd-hit-est clusters a DNA/RNA sequence database and cd-hit-est-2d compares two nucleotide datasets. All these programs can handle huge datasets with millions of sequences and can be hundreds of times faster than methods based on the popular sequence comparison and database search tools, such as BLAST.

                Author and article information

                BMC Genomics
                BMC Genomics
                BMC Genomics
                BioMed Central (London )
                27 September 2014
                27 September 2014
                : 15
                : 1
                [ ]Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
                [ ]Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, SE 171 21 Solna, Sweden
                [ ]Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, SE 752 37 Uppsala, Sweden
                [ ]Department of Biochemistry and Biophysics, Stockholm University, SE 106 91 Stockholm, Sweden
                [ ]Science for Life Laboratory, KTH, Royal Institute of Technology, Science for Life Laboratory, SE 171 65 Solna, Sweden
                © Kutsenko et al.; licensee BioMed Central Ltd. 2014

                This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated.

                Research Article
                Custom metadata
                © The Author(s) 2014


                chromosome puffs, balbiani ring genes, model organisms, eukaryotic gene expression


                Comment on this article