26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis.

      1 , , , ,
      Cancer research

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Apoptosis is a morphologically and biochemically distinct form of cell death that occurs under a variety of physiological and pathological conditions. In the present study, the proteolytic cleavage of poly(ADP-ribose) polymerase (pADPRp) during the course of chemotherapy-induced apoptosis was examined. Treatment of HL-60 human leukemia cells with the topoisomerase II-directed anticancer agent etoposide resulted in morphological changes characteristic of apoptosis. Endonucleolytic degradation of DNA to generate nucleosomal fragments occurred simultaneously. Western blotting with epitope-specific monoclonal and polyclonal antibodies revealed that these characteristic apoptotic changes were accompanied by early, quantitative cleavage of the M(r) 116,000 pADPRp polypeptide to an M(r) approximately 25,000 fragment containing the amino-terminal DNA-binding domain of pADPRp and an M(r) approximately 85,000 fragment containing the automodification and catalytic domains. Activity blotting revealed that the M(r) approximately 85,000 fragment retained basal pADPRp activity but was not activated by exogenous nicked DNA. Similar cleavage of pADPRp was observed after exposure of HL-60 cells to a variety of chemotherapeutic agents including cis-diaminedichloroplatinum(II), colcemid, 1-beta-D-arabinofuranosylcytosine, and methotrexate; to gamma-irradiation; or to the protein synthesis inhibitors puromycin or cycloheximide. Similar changes were observed in MDA-MB-468 human breast cancer cells treated with trifluorothymidine or 5-fluoro-2'-deoxyuridine and in gamma-irradiated or glucocorticoid-treated rat thymocytes undergoing apoptosis. Treatment with several compounds (tosyl-L-lysine chloromethyl ketone, tosyl-L-phenylalanine chloromethyl ketone, N-ethylmaleimide, iodoacetamide) prevented both the proteolytic cleavage of pADPRp and the internucleosomal fragmentation of DNA. The results suggest that proteolytic cleavage of pADPRp, in addition to being an early marker of chemotherapy-induced apoptosis, might reflect more widespread proteolysis that is a critical biochemical event early during the process of physiological cell death.

          Related collections

          Author and article information

          Journal
          Cancer Res
          Cancer research
          0008-5472
          0008-5472
          Sep 01 1993
          : 53
          : 17
          Affiliations
          [1 ] Oncology Center, Johns Hopkins Hospital, Baltimore, Maryland 21287.
          Article
          8358726
          1b689450-a575-429b-bce5-bf357e26448b
          History

          Comments

          Comment on this article