26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Decreased plasticity of coreceptor use by CD4-independent SIV Envs that emerge in vivo

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          HIV and SIV generally require CD4 binding prior to coreceptor engagement, but Env can acquire the ability to use CCR5 independently of CD4 under various circumstances. The ability to use CCR5 coupled with low-to-absent CD4 levels is associated with enhanced macrophage infection and increased neutralization sensitivity, but the additional features of these Envs that may affect cell targeting is not known.

          Results

          Here we report that CD4-independent SIV variants that emerged in vivo in a CD4+ T cell-depleted rhesus macaque model display markedly decreased plasticity of co-receptor use. While CD4-dependent Envs can use low levels of macaque CCR5 for efficient entry, CD4-independent variants required high levels of CCR5 even in the presence of CD4. CD4-independent Envs were also more sensitive to the CCR5 antagonist Maraviroc. CD4-dependent variants mediated efficient entry using human CCR5, whereas CD4-independent variants had impaired use of human CCR5. Similarly, CD4-independent Envs used the alternative coreceptors GPR15 and CXCR6 less efficiently than CD4-dependent variants. Env amino acids D470N and E84K that confer the CD4-independent phenotype also regulated entry through low CCR5 levels and GPR15, indicating a common structural basis. Treatment of CD4-dependent Envs with soluble CD4 enhanced entry through CCR5 but reduced entry through GPR15, suggesting that induction of CD4-induced conformational changes by non-cell surface-associated CD4 impairs use of this alternative co-receptor.

          Conclusions

          CD4 independence is associated with more restricted coreceptor interactions. While the ability to enter target cells through CCR5 independently of CD4 may enable infection of CD4 low-to-negative cells such as macrophages, this phenotype may conversely reduce the potential range of targets such as cells expressing low levels of CCR5, conformational variants of CCR5, or possibly even alternative coreceptors.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages.

          CCR5 and CXCR4 are the major HIV-1 coreceptors for R5 and X4 HIV-1 strains, respectively, and a threshold number of CD4 and chemokine receptor molecules is required to support virus infection. Therefore, we used a quantitative fluorescence-activated cell sorting assay to determine the number of CD4, CCR5, and CXCR4 antibody-binding sites (ABS) on various T cell lines, T cell subsets, peripheral blood dendritic cells (PBDC), and monocyte-derived macrophages by using four-color fluorescence-activated cell sorting analysis on fresh whole blood. Receptor levels varied dramatically among the various subsets examined and typically varied from 2- to 5-fold between individuals. CCR5 was expressed at much higher levels in CD4+/CD45RO+/CD62L-true memory cells compared with CD4+/CD45RO+/CD62L+ cells. Fresh PBDC had the highest number of CCR5 ABS among the leukocyte subsets examined but had few CXCR4 ABS, affording a strategy for sort-purifying PBDC. In vitro maturation of PBDC resulted in median 3- and 41-fold increases in CCR5 and CXCR4 ABS, respectively. We found that macrophage colony-stimulating factor caused the greatest up-regulation of both CCR5 and CXCR4 on macrophage maturation (from approximately 5,000 to approximately 50, 000 ABS) whereas granulocyte-macrophage colony-stimulating factor caused a marked decrease of CXCR4 (from approximately 5,000 ABS to <500) while up-regulating CCR5 expression (from approximately 5,000 to approximately 20,000 ABS). Absolute ABS for CD4 and the major HIV-1 coreceptors serve as a more quantitative measure of cell surface expression, and we propose that this be used for future studies looking at the modulation of CD4 or chemokine receptor expression by cytokines, HIV-1 infection, or receptor polymorphisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding.

            The entry of primate immunodeficiency viruses into target cells depends on a sequential interaction of the gp120 envelope glycoprotein with the cellular receptors, CD4 and members of the chemokine receptor family. The gp120 third variable (V3) loop has been implicated in chemokine receptor binding, but the use of the CCR5 chemokine receptor by diverse primate immunodeficiency viruses suggests the involvement of an additional, conserved gp120 element. Through the use of gp120 mutants, a highly conserved gp120 structure was shown to be critical for CCR5 binding. This structure is located adjacent to the V3 loop and contains neutralization epitopes induced by CD4 binding. This conserved element may be a useful target for pharmacologic or prophylactic intervention in human immunodeficiency virus (HIV) infections.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CD4-independent infection by HIV-2 is mediated by fusin/CXCR4.

              Several members of the chemokine receptor family have been shown to function in association with CD4 to permit HIV-1 entry and infection. However, the mechanism by which these molecules serve as CD4-associated cofactors is unclear. In the present report, we show that one member of this family, termed Fusin/ CXCR4, is able to function as an alternative receptor for some isolates of HIV-2 in the absence of CD4. This conclusion is supported by the finding that (1) CD4-independent infection by these viruses is inhibited by an anti-Fusin monoclonal antibody, (2) Fusin expression renders human and nonhuman CD4-negative cell lines sensitive to HIV-2-induced syncytium induction and/or infection, and (3) Fusin is selectively down-regulated from the cell surface following HIV-2 infection. The finding that one chemokine receptor can function as a primary viral receptor strongly suggests that the HIV envelope glycoprotein contains a binding site for these proteins and that differences in the affinity and/or the availability of this site can extend the host range of these viruses to include a number of CD4-negative cell types.
                Bookmark

                Author and article information

                Journal
                Retrovirology
                Retrovirology
                Retrovirology
                BioMed Central
                1742-4690
                2013
                12 November 2013
                : 10
                : 133
                Affiliations
                [1 ]Department of Medicine, University of Pennsylvania Perelman School of Medicine, 522 Johnson Pavilion, 36th & Hamilton Walk, Philadelphia, PA, USA
                [2 ]Department of Pathology and Laboratory Medicine and the Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
                Article
                1742-4690-10-133
                10.1186/1742-4690-10-133
                3833851
                24219995
                1b852ba9-cbb6-4e44-8909-eb788726ba54
                Copyright © 2013 Francella et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 August 2013
                : 31 October 2013
                Categories
                Research

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article