46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Demonstration of Entanglement of Electrostatically Coupled Singlet-Triplet Qubits

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Quantum computers have the potential to solve certain interesting problems significantly faster than classical computers. To exploit the power of a quantum computation it is necessary to perform inter-qubit operations and generate entangled states. Spin qubits are a promising candidate for implementing a quantum processor due to their potential for scalability and miniaturization. However, their weak interactions with the environment, which leads to their long coherence times, makes inter-qubit operations challenging. We perform a controlled two-qubit operation between singlet-triplet qubits using a dynamically decoupled sequence that maintains the two-qubit coupling while decoupling each qubit from its fluctuating environment. Using state tomography we measure the full density matrix of the system and determine the concurrence and the fidelity of the generated state, providing proof of entanglement.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Quantum Computation with Quantum Dots

          We propose a new implementation of a universal set of one- and two-qubit gates for quantum computation using the spin states of coupled single-electron quantum dots. Desired operations are effected by the gating of the tunneling barrier between neighboring dots. Several measures of the gate quality are computed within a newly derived spin master equation incorporating decoherence caused by a prototypical magnetic environment. Dot-array experiments which would provide an initial demonstration of the desired non-equilibrium spin dynamics are proposed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Driven coherent oscillations of a single electron spin in a quantum dot

            The ability to control the quantum state of a single electron spin in a quantum dot is at the heart of recent developments towards a scalable spin-based quantum computer. In combination with the recently demonstrated exchange gate between two neighbouring spins, driven coherent single spin rotations would permit universal quantum operations. Here, we report the experimental realization of single electron spin rotations in a double quantum dot. First, we apply a continuous-wave oscillating magnetic field, generated on-chip, and observe electron spin resonance in spin-dependent transport measurements through the two dots. Next, we coherently control the quantum state of the electron spin by applying short bursts of the oscillating magnetic field and observe about eight oscillations of the spin state (so-called Rabi oscillations) during a microsecond burst. These results demonstrate the feasibility of operating single-electron spins in a quantum dot as quantum bits.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Coherent control of a single electron spin with electric fields

              Manipulation of single spins is essential for spin-based quantum information processing. Electrical control instead of magnetic control is particularly appealing for this purpose, since electric fields are easy to generate locally on-chip. We experimentally realize coherent control of a single electron spin in a quantum dot using an oscillating electric field generated by a local gate. The electric field induces coherent transitions (Rabi oscillations) between spin-up and spin-down with pi/2 rotations as fast as ~55ns. Our analysis indicates that the electrically-induced spin transitions are mediated by the spin-orbit interaction. Taken together with the recently demonstrated coherent exchange of two neighboring spins, our results demonstrate the feasibility of fully electrical manipulation of spin qubits.
                Bookmark

                Author and article information

                Journal
                2012-02-08
                Article
                10.1126/science.1217692
                1202.1828
                1b90eb3e-7004-4e9f-bcf8-117b8f397e67

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Science 336, 202 (2012)
                cond-mat.mes-hall quant-ph

                Quantum physics & Field theory,Nanophysics
                Quantum physics & Field theory, Nanophysics

                Comments

                Comment on this article