0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Epigallocatechin-3-gallate promotes angiogenesis via up-regulation of Nfr2 signaling pathway in a mouse model of ischemic stroke.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Epigallocatechin-3-gallate (EGCG) is the major effective component of green tea and has been known as a potential anticancer drug because of its antioxidant and anti-angiogenic properties. EGCG has also been reported to have preventive effects against ischemic stroke via nuclear factor erythroid 2-related factor 2 (Nfr2) signaling pathway, but how EGCG affect angiogenesis after stroke remains unclear. In this study, we investigated whether EGCG treatment in the acute phase of ischemic stroke can promote angiogenesis in a mouse model of transient middle cerebral artery occlusion (MCAO). We assessed neurological function with modified neurologic severity score (mNSS) test, infarct volume by Nessl staining, angiogenesis and oxidative stress by immunofluorescence analysis, intravital lectin perfusion analysis, western blot analysis and enzyme-linked immunosorbent assay (ELISA). In order to explore the role of Nrf2 in the angiogenesis of MCAO+EGCG-treated mice, we used MAPK/ERK inhibitor PD98059 to block the activation of Nrf2. We found MCAO+EGCG-treated mice had better neurologic outcome, less infarct volume, more number of Ki67/CD31-positive vessels, higher vascular density, unregulated VEGF-VEGFR2 signaling pathway, increased Nrf2 expression and decreased oxidative stress than did MCAO+vehicle-treated mice. Blocking Nrf2 with PD98059 significantly reduced the expression of Nrf2, increased oxidative stress and abolished the angiogenic and neuroprotective effects of EGCG on MCAO mice. We conclude that EGCG treatment in the early stage of ischemic stroke can promote angiogenesis in MCAO mice, possibly via upregulation of Nrf2 signaling pathway.

          Related collections

          Author and article information

          Journal
          Behav. Brain Res.
          Behavioural brain research
          Elsevier BV
          1872-7549
          0166-4328
          Mar 15 2017
          : 321
          Affiliations
          [1 ] Anesthesiology Department, The Second Affiliated Hospital of ZhengZhou University, China.
          [2 ] Anesthesiology Department, The Third Affiliated Hospital of Zhengzhou University, China.
          [3 ] Pharmacology Department, The Second Affiliated Hospital of ZhengZhou University, China.
          [4 ] Neurology Department, The Second Affiliated Hospital of ZhengZhou University, China. Electronic address: drloujy@163.com.
          [5 ] Anesthesiology Department, The Second Affiliated Hospital of ZhengZhou University, China. Electronic address: drdongtl@yeah.net.
          Article
          S0166-4328(16)30787-2
          10.1016/j.bbr.2016.12.037
          28042007
          1b9af6be-7999-480f-a7c9-0fb280e73155
          History

          Angiogenesis,EGCG,Ischemic stroke,Nrf2
          Angiogenesis, EGCG, Ischemic stroke, Nrf2

          Comments

          Comment on this article