44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      On Accounting for Sequence-Specific Bias in Genome-Wide Chromatin Accessibility Experiments: Recent Advances and Contradictions

      discussion

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Next-Generation Sequencing for Chromatin Biology Uncovering the protein–DNA interactions involved in cell fate, development, and disease in a time- and cell-specific manner is a fundamental goal of molecular biology. The advent of the sequencing technologies has opened a new genomic era, uncovering the information encoded in genomes, epigenomes, and transcriptomes (McPherson, 2014). For example, the popular ChIP-based techniques ChIP-seq (Johnson et al., 2007; Robertson et al., 2007) and ChIP-exo (Rhee and Pugh, 2011) are widely used to detect transcription factor (TF)-binding sites using an antibody against a single protein of interest (Mahony and Pugh, 2015). Alternative protocols assaying the chromatin landscape, such as those based on digestion by DNase I enzyme (DNase-seq), micrococcal nuclease (MNase-seq), and Tn5 transposase attack (ATAC-seq), enable the identification of DNA-binding protein footprints of many TFs in a single experiment (Tsompana and Buck, 2014). Time-series experiments might be required for the identification of those TFs cataloged as pioneer factors, allowing their effects on chromatin to be investigated (Zaret and Carroll, 2011; Pajoro et al., 2014; Sherwood et al., 2014). Despite the initial promise of detecting the majority of TFs in one assay, DNA sequence-specific biases, together with TF-dependent binding kinetics, have been recently pinpointed as major confounding factors in DNase-seq experiments (Koohy et al., 2013; He et al., 2014; Raj and McVicker, 2014; Rusk, 2014; Sung et al., 2014). These influencing factors were not considered by any of the previous computational approaches for the analysis of next-generation sequencing chromatin accessibility data (Madrigal and Krajewski, 2012); neither those strategies based on TF-generic DNase signature nor those based on TF-specific DNase signature (Luo and Hartemink, 2013). Alleviating Sequence-Specific Biases in DNase-seq To partly address these challenges, four recent approaches have been published that model, predict, or explain DNase I sequence specificity in order to improve the detection of TF occupancy events at high resolution (digital genomic footprinting). The first method, FootprintMixture, uses a multinomial mixture model in which one mixture models the footprint component, and the other the background component taking into account the sequence bias (Yardimci et al., 2014). The background can be either uniform or derived from naked DNA measurements – this is the main difference with respect to the footprint component in CENTIPEDE (Pique-Regi et al., 2011), which assumes a uniform background. Alternatively, more than two components may be set to detect variability in the footprint model. Thus, the cleavage signature (number of DNase I cuts that map to each nucleotide) is used in a multinomial mixture model to classify candidate sites as either “bound” or “unbound” aided by 6-mer DNase sequence bias cleavage frequencies (Yardimci et al., 2014). Remarkably, the authors found that sequence bias is DNase-seq protocol specific. They also found that the signature of a footprint could be formed by a mixture of DNase digestion profiles identified by unsupervised k-means clustering, in agreement with the observations found in an earlier study (Tewari et al., 2012). For TFs CTCF and ZNF143, variants of the consensus sequence motif associated to different footprint shapes were observed. In the second, the DNase2TF algorithm is able to correct dinucleotide bias, detecting footprints with accuracy better or comparable to existing approaches (Sung et al., 2014). Furthermore, Sung et al. (2014) were able to predict DNase signatures using solely tetranucleotide frequency information. Although this 4-nucleotide region has the highest information content, Koohy et al. (2013) and Lazarovici et al. (2013) demonstrated information beyond a context longer than four nucleotides. Consequently, using naked (deproteinized) DNA control datasets specific to a protocol and an enzyme as well as high sequencing depth (Hesselberth et al., 2009) are now suggested recommendations for DNase-seq experiments aiming to detect footprints (Meyer and Liu, 2014). A third approach, an improved version of HINT [HMM-based identification of TF footprints (Gusmao et al., 2014)], named as HINT-BC/HINT-BCN (Bias Correction based on hypersensitivity sites/Bias Correction based on Naked DNase-seq) includes k-mer based bias correction in DNase-seq data as in He et al. (2014), leading to substantial changes in the average DNase I cleavage patterns surrounding the TFs. These changes result beneficial to footprinting method accuracy (personal communication with the author). Contradictorily, a fourth study using DNase-seq has shown that bias correction does not significantly improve the accuracy of TF binding identification (Kähärä and Lähdesmäki, 2015). In addition, this study poses a second counterintuitive idea in the field: accuracy saturates at a modest sequencing depth (30–60 million reads), and only a few TFs present improvement at deeper sequencing. ATAC-seq Shows Sequence Cleavage Bias It is unknown if ATAC-seq derived footprints are factor dependent or affected by Tn5 cleavage preferences (Tsompana and Buck, 2014). As expected, bioinformatic analysis of chromosome 22 in the published human datasets for 50,000 cells reveals sequence biases in ATAC-seq experiments (Buenrostro et al., 2013) (Figure 1), similar to those found by Koohy et al. (2013) in DNase-seq. As ATAC-seq might replace DNase-seq in the foreseeable future due to its cost and time efficiencies, and because it simultaneously allows the identification of nucleosome positions (Buenrostro et al., 2013), new computational models are necessary to evaluate intrinsic confounding factors in ATAC-seq. Figure 1 Tn5 transposase shows sequence cleavage bias. Data represented correspond to read-start sites in reads aligned to forward and reverse strands in chromosome 22 in four ATAC-seq replicates (50 k cells per replicate) reported in Buenrostro et al. (2013). Of total, 50 bp PE reads were pre-processed with Trimmomatic v0.32 under default parameters, and then aligned to hg19 using BWA v0.7.4-r385 (Li and Durbin, 2010; Bolger et al., 2014). Sequence logos were generated using WebLogo (Crooks et al., 2004). Y -axis: 0.0–0.3 bits. A novel approach, msCentipede (Raj et al., 2014), has extended CENTIPEDE (Pique-Regi et al., 2011) from a mutinomial model to a hierarchical multiscale model. It has been evaluated on “single-hit” UW DNase-seq (Hesselberth et al., 2009) and on paired-end (PE) ATAC-seq data. Surprisingly, the “flexible model” for background DNase I cleavage rate (msCentipede-flexbg) shows very little improvement for a broad range of factors when taking into account naked DNA information from Lazarovici et al. (2013) datasets. This finding clearly contradicts those of He et al. (2014) and Sung et al. (2014). In msCentipede, the footprint signature (or cleavage profile) pattern within a factor-bound motif instance was, therefore, found to be informative when increasing the sensitivity and specificity of the TF binding site prediction. Raj et al. (2014) suggest that this might be explained by the different range of read count data between the matched consensus sequence of the candidate site/motif (10–30 bp) and the data matrix used typically by the software packages (larger sequence window, around 100–150 bp extension at each flank of the motif), which can mask the effects produced by not accounting for sequence biases within the core motif. Are Current Benchmarks Adequate to Evaluate Bias-Corrected DNase-seq Data? So far, a footprint of a TF, therefore, might be either detectable (and better detectable when accounting, or not, for influencing factors), or undetectable. In many studies, both problems are convoluted and addressed using the same “gold standard” datasets, such as ChIP-seq, which do not have nucleotide-level resolution. Hence, on these methods and gold standards, no reproducible improvements can be seen. This was already noted in Cuellar-Partida et al. (2012), when it was showed that simply scanning for position weight matrices in DNase I hypersensitive sites (DHSs) had the same power as CENTIPEDE. These issues also complicate data integration with TF ChIP-seq, as peaks without a footprint in DNase-seq/ATAC-seq, considered weak/indirect binding or false positives (ChIP artifacts), might instead be explained by a class of TFs with rapid kinetics. And vice versa, DNase I cleavage patterns located within “ChIP-seq unbound” sites – noted previously, e.g., in the MILLIPEDE framework, especially in yeast (Luo and Hartemink, 2013) – could support the hypothesis of footprint shape dominated by DNA sequence specificities. Future Directions There is room for improvement in current methodologies by making use of the sequence specificity of each enzyme/assay, including ATAC-seq, but there is no clear consensus in its importance for digital genomic footprinting. This situation is not exclusive for genome-wide chromatin accessibility experiments: modeling the sequence-specific lambda exonuclease bias in ChIP-exo did not significantly increase the identification of TF binding sites (Wang et al., 2014). Similarly, there is no clear consensus if footprint signatures at the core motif, whether they are unique or not for an individual factor, are really important for footprint identification. Establishing better benchmarks to compare performance of the algorithms across different protocols is a fundamental task. These benchmarks could be based on “differential footprints” (sites within DHSs that are bound by a factor in one condition but not the other) as a more appropriate metric to evaluate footprint identification performance instead of using ChIP-seq data (Yardimci et al., 2014). In addition, are DNase-seq software tools equally applicable to ATAC-seq without modification? If enzyme-specific biases are taken into account in a comparable experimental set-up, will DNase-seq and ATAC-seq report the same footprints for an identical sample using same algorithm parameters? This is unlikely, based on a previous comparison between open chromatin DHSs and FAIRE sites, which revealed unique regions produced in each assay (Song et al., 2011). It has been also proposed that performing, and combining, experiments with different nucleases can be an alternative to mitigate biases (He et al., 2014; Mahony and Pugh, 2015). A greater challenge is dealing with proteins with very short residency time in the DNA as they produce mostly negligible footprints (Rusk, 2014; Sung et al., 2014). Optimizing and implementing new methods is necessary in order to enable biological insights that current methods cannot reveal. Conflict of Interest Statement The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data.

          Accurate functional annotation of regulatory elements is essential for understanding global gene regulation. Here, we report a genome-wide map of 827,000 transcription factor binding sites in human lymphoblastoid cell lines, which is comprised of sites corresponding to 239 position weight matrices of known transcription factor binding motifs, and 49 novel sequence motifs. To generate this map, we developed a probabilistic framework that integrates cell- or tissue-specific experimental data such as histone modifications and DNase I cleavage patterns with genomic information such as gene annotation and evolutionary conservation. Comparison to empirical ChIP-seq data suggests that our method is highly accurate yet has the advantage of targeting many factors in a single assay. We anticipate that this approach will be a valuable tool for genome-wide studies of gene regulation in a wide variety of cell types or tissues under diverse conditions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global mapping of protein-DNA interactions in vivo by digital genomic footprinting

            The orchestrated binding of transcriptional activators and repressors to specific DNA sequences in the context of chromatin defines the regulatory program of eukaryotic genomes. We developed a digital approach to assay regulatory protein occupancy on genomic DNA in vivo by dense mapping of individual DNase I cleavages from intact nuclei using massively parallel DNA sequencing. Analysis of > 23 million cleavages across the Saccharomyces cerevisiae genome revealed thousands of protected regulatory protein footprints, enabling de novo derivation of factor binding motifs as well as the identification of hundreds of novel binding sites for major regulators. We observed striking correspondence between nucleotide-level DNase I cleavage patterns and protein-DNA interactions determined by crystallography. The data also yielded a detailed view of larger chromatin features including positioned nucleosomes flanking factor binding regions. Digital genomic footprinting provides a powerful approach to delineate the cis-regulatory framework of any organism with an available genome sequence.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity.

              The human body contains thousands of unique cell types, each with specialized functions. Cell identity is governed in large part by gene transcription programs, which are determined by regulatory elements encoded in DNA. To identify regulatory elements active in seven cell lines representative of diverse human cell types, we used DNase-seq and FAIRE-seq (Formaldehyde Assisted Isolation of Regulatory Elements) to map "open chromatin." Over 870,000 DNaseI or FAIRE sites, which correspond tightly to nucleosome-depleted regions, were identified across the seven cell lines, covering nearly 9% of the genome. The combination of DNaseI and FAIRE is more effective than either assay alone in identifying likely regulatory elements, as judged by coincidence with transcription factor binding locations determined in the same cells. Open chromatin common to all seven cell types tended to be at or near transcription start sites and to be coincident with CTCF binding sites, while open chromatin sites found in only one cell type were typically located away from transcription start sites and contained DNA motifs recognized by regulators of cell-type identity. We show that open chromatin regions bound by CTCF are potent insulators. We identified clusters of open regulatory elements (COREs) that were physically near each other and whose appearance was coordinated among one or more cell types. Gene expression and RNA Pol II binding data support the hypothesis that COREs control gene activity required for the maintenance of cell-type identity. This publicly available atlas of regulatory elements may prove valuable in identifying noncoding DNA sequence variants that are causally linked to human disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                2296-4185
                22 September 2015
                2015
                : 3
                : 144
                Affiliations
                [1] 1Wellcome Trust Sanger Institute , Cambridge, UK
                [2] 2Department of Surgery, University of Cambridge , Cambridge, UK
                Author notes

                Edited by: Ekaterina Shelest, Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knoell Institute, Germany

                Reviewed by: Gaurav Sablok, Istituto Agrario San Michele, Italy; Uwe Ohler, Max Delbrueck Center, Germany

                *Correspondence: Pedro Madrigal, pm12@ 123456sanger.ac.uk

                Specialty section: This article was submitted to Bioinformatics and Computational Biology, a section of the journal Frontiers in Bioengineering and Biotechnology

                Article
                10.3389/fbioe.2015.00144
                4585268
                1bb4e5bf-ad62-4cf7-9ae2-8197e58af810
                Copyright © 2015 Madrigal.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 June 2015
                : 07 September 2015
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 32, Pages: 4, Words: 2732
                Categories
                Bioengineering and Biotechnology
                Opinion

                next-generation sequencing,dnase-seq,atac-seq,chromatin accessibility,footprinting,sequence bias,chip-exo

                Comments

                Comment on this article