2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Preclinical anticancer studies on the ethyl acetate leaf extracts of Datura stramonium and Datura inoxia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Cancer is a horrific disease relentlessly affecting human population round the globe. Genus Datura encompasses numerous species with reported medicinal uses. However, its potential as a source of natural anticancer agents is yet to be determined. Datura stramonium (DS) and Datura inoxia (DI) are the two species chosen for this study.

          Methods

          Total phenolic and flavonoid content (TPC and TFC) as well as antioxidant activity were assessed through colorimetric method. Polyphenolic quantification was done by RP-HPLC. Following extract standardization ethyl acetate leaf extracts of both species (DSL-EA and DIL-EA) were chosen for anticancer studies. In vitro cytotoxicity using various models including cancer cell lines was monitored. Following toxicity studies, benzene (0.2 ml) was used to induce leukemia in Sprague-Dawley rats. Extracts were orally administered to preventive (100 and 200 mg/kg) and treatment (200 mg/kg only) groups. The antileukemic potential of extracts was assessed through haematological, biochemical, endogenous antioxidants and histological parameters.

          Results

          Significant TPC and TFC were estimated in DSL-EA and DIL-EA. RP-HPLC quantified (μg/mg extract) rutin (0.89 ± 0.03), gallic acid (0.35 ± 0.07), catechin (0.24 ± 0.02) and apigenin (0.29 ± 0.09) in DSL-EA while rutin (0.036 ± 0.004) and caffeic acid (0.27 ± 0.03) in DIL-EA. Both extracts exhibited significant brine shrimp cytotoxicity (LC 50 < 12.5 μg/ml). DIL-EA exhibited greater cytotoxicity against PC-3, MDA-MB 231 and MCF-7 cell lines (IC 50 < 3 μg/ml in each case) as well as higher protein kinase inhibitory action (MIC: 25 μg/disc) compared to DSL-EA. Leukemia induced in rats was affirmed by elevated serum levels of WBCs (7.78 ± 0.012 (× 10 3) /μl), bilirubin (7.56 ± 0.97 mg/dl), Thiobarbituric acid reactive substances (TBARs) (133.75 ± 2.61 nM/min/mg protein), decreased RBCs (4.33 ± 0.065 (× 10 6)/μl), platelets (344 ± 3.19 (× 10 3)/μl), total proteins (2.14 ± 0.11 g/dl), Glutathione S-transferases (GST) (81.01 ± 0.44 nM/min/ml), endogenous antioxidant enzymes levels and abnormal liver and kidney functionality in disease control rats. Both species revealed almost identical and significant ( p < 0.05) alleviative effects in benzene induced leukemia.

          Conclusion

          Comprehensive screening divulged the tremendous potential of selected species as potent source of natural anticancer agents in a variety of cancers particularly leukemia. Present study might provide useful finger prints in cancer research and mechanistic studies are prerequisite in logical hunt of this goal.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Structure-antioxidant activity relationships of flavonoids and phenolic acids.

          The recent explosion of interest in the bioactivity of the flavonoids of higher plants is due, at least in part, to the potential health benefits of these polyphenolic components of major dietary constituents. This review article discusses the biological properties of the flavonoids and focuses on the relationship between their antioxidant activity, as hydrogen donating free radical scavengers, and their chemical structures. This culminates in a proposed hierarchy of antioxidant activity in the aqueous phase. The cumulative findings concerning structure-antioxidant activity relationships in the lipophilic phase derive from studies on fatty acids, liposomes, and low-density lipoproteins; the factors underlying the influence of the different classes of polyphenols in enhancing their resistance to oxidation are discussed and support the contention that the partition coefficients of the flavonoids as well as their rates of reaction with the relevant radicals define the antioxidant activities in the lipophilic phase.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            The discovery of receptor tyrosine kinases: targets for cancer therapy.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DD3: a new prostate-specific gene, highly overexpressed in prostate cancer.

              Prostate cancer is the most commonly diagnosed malignancy and the second leading cause of cancer-related deaths in the Western male population. Despite the tremendous efforts that have been made to improve the early detection of this disease and to design new treatment modalities, there is still an urgent need for new markers and therapeutic targets for the management of prostate cancer patients. Using differential display analysis to compare the mRNA expression patterns of normal versus tumor tissue of the human prostate, we identified a cDNA, DD3, which is highly overexpressed in 53 of 56 prostatic tumors in comparison to nonneoplastic prostatic tissue of the same patients. Reverse transcription-PCR analysis using DD3-specific primers indicated that the expression of DD3 is very prostate specific because no product could be amplified in 18 different normal human tissues studied. Also, in a sampling of other tumor types and a large number of cell lines, no expression of DD3 could be detected. Molecular characterization of the DD3 transcription unit revealed that alternative splicing and alternative polyadenylation occur. The fact that no extensive open reading frame could be found suggests that DD3 may function as a noncoding RNA. The DD3 gene was mapped to chromosome 9q21-22, and no homology of DD3 to any gene present in the computer databases was found. Our data indicate that DD3 is one of the most prostate cancer-specific genes yet described, and this makes DD3 a promising marker for the early diagnosis of prostate cancer and provides a powerful tool for the development of new treatment strategies for prostate cancer patients.
                Bookmark

                Author and article information

                Contributors
                bakhtnasir61@yahoo.com
                mwbg7@yahoo.com
                majidpharma808@gmail.com
                masoomaali012@gmail.com
                m.zafarirshad@yahoo.com
                aymentyba39@gmail.com
                ihsn99@yahoo.com , ihaq@qau.edu.pk
                Journal
                BMC Complement Med Ther
                BMC Complement Med Ther
                BMC Complementary Medicine and Therapies
                BioMed Central (London )
                2662-7671
                17 June 2020
                17 June 2020
                2020
                : 20
                : 188
                Affiliations
                [1 ]GRID grid.412621.2, ISNI 0000 0001 2215 1297, Department of Pharmacy, Faculty of Biological Sciences, , Quaid-i-Azam University, ; Islamabad, 45320 Pakistan
                [2 ]Department of Pharmacy, Capital University of Science and Technology, Islamabad, 44000 Pakistan
                Author information
                http://orcid.org/0000-0001-6413-5957
                Article
                2975
                10.1186/s12906-020-02975-8
                7302377
                32552791
                1bb5d709-96c0-45cf-b8de-a41306237f3c
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 29 August 2019
                : 31 May 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100004253, Quaid-i-Azam University;
                Award ID: QAU-Bio/Pharm.URF-2016
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2020

                datura stramonium,datura inoxia,anticancer,antileukemic,breast cancer,prostate cancer,benzene toxicity

                Comments

                Comment on this article