Blog
About

2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Image quality evaluation in a modern PET system: impact of new reconstructions methods and a radiomics approach

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The present work investigates the influence of different biological and physical parameters on image quality (IQ) perception of the abdominal area in a modern PET scanner, using new reconstruction algorithms and testing the utility of a radiomics approach. Scans of 112 patients were retrospectively included. Images were reconstructed using both OSEM + PSF and BSRM methods, and IQ of the abdominal region was subjectively evaluated. First, 22 IQ related parameters were obtained (including count rate and biological or mixed parameters) and compared to the subjective IQ scores by means of correlations and logistic regression. Second, an additional set of radiomics features was extracted, and a model was constructed by means of an elastic-net regression. For the OSEM + PSF and especially for the BSRM reconstructions, IQ parameters presented only at best moderated correlations with the subjective IQ. None of the studied parameters presented a good predictive power for IQ, while a simple radiomics model increased the performance of the IQ prediction. These results suggest the necessity of changing the standard parameters to evaluate IQ, particularly when a BSRM algorithm is involved. Furthermore, it seems that a simple radiomics model can outperform the use of any single parameter to assess IQ.

          Related collections

          Most cited references 18

          • Record: found
          • Abstract: found
          • Article: not found

          Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study.

          Semiquantitative standard uptake values (SUVs) are used for tumor diagnosis and response monitoring. However, the accuracy of the SUV and the accuracy of relative change during treatment are not well documented. Therefore, an experimental and simulation study was performed to determine the effects of noise, image resolution, and region-of-interest (ROI) definition on the accuracy of SUVs. Experiments and simulations are based on thorax phantoms with tumors of 10-, 15-, 20-, and 30-mm diameter and background ratios (TBRs) of 2, 4, and 8. For the simulation study, sinograms were generated by forward projection of the phantoms. For each phantom, 50 sinograms were generated at 3 noise levels. All sinograms were reconstructed using ordered-subset expectation maximization (OSEM) with 2 iterations and 16 subsets, with or without a 6-mm gaussian filter. For each tumor, the maximum pixel value and the average of a 50%, a 70%, and an adaptive isocontour threshold ROI were derived as well as with an ROI of 15 x 15 mm. The accuracy of SUVs was assessed using the average of 50 ROI values. Treatment response was simulated by varying the tumor size or the TBR. For all situations, a strong correlation was found between maximum and isocontour-based ROI values resulting in similar dependencies on image resolution and noise of all studied SUV measures. A strong variation with tumor size of > or =50% was found for all SUV values. For nonsmoothed data with high noise levels this variation was primarily due to noise, whereas for smoothed data with low noise levels partial-volume effects were most important. In general, SUVs showed under- and overestimations of > or =50% and depended on all parameters studied. However, SUV ratios, used for response monitoring, were only slightly dependent of ROI definition but were still affected by noise and resolution. The poor accuracy of the SUV under various conditions may hamper its use for diagnosis, especially in multicenter trials. SUV ratios used to measure response to treatment, however, are less dependent on noise, image resolution, and ROI definition. Therefore, the SUV might be more suitable for response-monitoring purposes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phantom and Clinical Evaluation of the Bayesian Penalized Likelihood Reconstruction Algorithm Q.Clear on an LYSO PET/CT System.

            Q.Clear, a Bayesian penalized-likelihood reconstruction algorithm for PET, was recently introduced by GE Healthcare on their PET scanners to improve clinical image quality and quantification. In this work, we determined the optimum penalization factor (beta) for clinical use of Q.Clear and compared Q.Clear with standard PET reconstructions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Globally convergent image reconstruction for emission tomography using relaxed ordered subsets algorithms.

               S. Ahn,  J.A. Fessler (2003)
              We present two types of globally convergent relaxed ordered subsets (OS) algorithms for penalized-likelihood image reconstruction in emission tomography: modified block sequential regularized expectation-maximization (BSREM) and relaxed OS separable paraboloidal surrogates (OS-SPS). The global convergence proof of the existing BSREM (De Pierro and Yamagishi, 2001) required a few a posteriori assumptions. By modifying the scaling functions of BSREM, we are able to prove the convergence of the modified BSREM under realistic assumptions. Our modification also makes stepsize selection more convenient. In addition, we introduce relaxation into the OS-SPS algorithm (Erdoğan and Fessler, 1999) that otherwise would converge to a limit cycle. We prove the global convergence of diagonally scaled incremental gradient methods of which the relaxed OS-SPS is a special case; main results of the proofs are from (Nedić and Bertsekas, 2001) and (Correa and Lemaréchal, 1993). Simulation results showed that both new algorithms achieve global convergence yet retain the fast initial convergence speed of conventional unrelaxed ordered subsets algorithms.
                Bookmark

                Author and article information

                Contributors
                jmmartic@unav.es
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                23 July 2019
                23 July 2019
                2019
                : 9
                Affiliations
                [1 ]Medical Physics Department, Institut Català d’Oncologia, L’Hospitalet de Llobregat, Barcelona, Spain
                [2 ]GRID grid.417656.7, PET Unit. Nuclear Medicine Dept, IDI. Hospital U. de Bellvitge-IDIBELL, L’Hospitalet de Llobregat, ; Barcelona, Spain
                [3 ]ISNI 0000 0001 2191 685X, GRID grid.411730.0, Medical Physics Department, Clínica Universidad de Navarra, ; Pamplona, Spain
                Article
                46937
                10.1038/s41598-019-46937-8
                6650602
                31337779
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized

                molecular medicine, cancer imaging

                Comments

                Comment on this article