22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-Wide Scan for Runs of Homozygosity Identifies Candidate Genes in Three Pig Breeds

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Runs of homozygosity (ROH) are the DNA segments that harbor uninterrupted stretches of homozygous genotype segments in the genome that are present in an individual due to the transmission of identical haplotypes from parents to their offspring. ROHs are widely used as predictors of whole-genome inbreeding levels in animals and identify highly selected genomic regions. In this study, we investigated the ROH distributions on the whole genome in three pig populations (Landrace, Songliao black and Yorkshire pigs). Moreover, inbreeding coefficients based on ROH were calculated and genes were annotated in the genomic regions with a high frequency of ROH. Results showed that Songliao black pigs had higher inbreeding in recent generations and ten genes related to economically important traits were located within ROH regions. Our findings provide a reference for developing breeding programs to maintain diversity and fitness in these breeds.

          Abstract

          Runs of homozygosity (ROH) are contiguous homozygous genotype segments in the genome that are present in an individual since the identical haplotypes are inherited from each parent. The aim of this study was to investigate the frequency and distribution of ROH in the genomes of Landrace, Songliao black and Yorkshire pigs. We calculated two types of genome inbreeding coefficients and their correlation, including the inbreeding coefficient based on ROH ( F ROH ) and the inbreeding coefficient based on the difference between the observed and expected number of homozygous genotypes ( F HOM ). Furthermore, we identified candidate genes in the genomic region most associated with ROH. We identified 21,312 ROH in total. The average number of ROH per individual was 32.99 ± 0.38 and the average length of ROH was 6.40 ± 0.070 Mb in the three breeds. The F ROH results showed that Yorkshire pigs exhibited the highest level of inbreeding (0.092 ± 0.0015) and that Landrace pigs exhibited the lowest level of inbreeding (0.073 ± 0.0047). The average correlation between F ROH and F HOM was high (0.94) within three breeds. The length of ROH provides insight into the inbreeding history of these three pig breeds. In this study, Songliao black pigs presented a higher frequency and average length of long ROH (>40 Mb) compared with those of Landrace and Yorkshire pigs, which indicated greater inbreeding in recent times. Genes related to reproductive traits ( GATM, SPATA46, HSD17B7, VANGL2, DAXX, CPEB1), meat quality traits ( NR1I3, APOA2, USF1) and energy conversion ( NDUFS2) were identified within genomic regions with a high frequency of ROH. These genes could be used as target genes for further marker-assisted selection and genome selection.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Genomic patterns of homozygosity in worldwide human populations.

          Genome-wide patterns of homozygosity runs and their variation across individuals provide a valuable and often untapped resource for studying human genetic diversity and evolutionary history. Using genotype data at 577,489 autosomal SNPs, we employed a likelihood-based approach to identify runs of homozygosity (ROH) in 1,839 individuals representing 64 worldwide populations, classifying them by length into three classes-short, intermediate, and long-with a model-based clustering algorithm. For each class, the number and total length of ROH per individual show considerable variation across individuals and populations. The total lengths of short and intermediate ROH per individual increase with the distance of a population from East Africa, in agreement with similar patterns previously observed for locus-wise homozygosity and linkage disequilibrium. By contrast, total lengths of long ROH show large interindividual variations that probably reflect recent inbreeding patterns, with higher values occurring more often in populations with known high frequencies of consanguineous unions. Across the genome, distributions of ROH are not uniform, and they have distinctive continental patterns. ROH frequencies across the genome are correlated with local genomic variables such as recombination rate, as well as with signals of recent positive selection. In addition, long ROH are more frequent in genomic regions harboring genes associated with autosomal-dominant diseases than in regions not implicated in Mendelian diseases. These results provide insight into the way in which homozygosity patterns are produced, and they generate baseline homozygosity patterns that can be used to aid homozygosity mapping of genes associated with recessive diseases. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Genomic Runs of Homozygosity Record Population History and Consanguinity

            The human genome is characterised by many runs of homozygous genotypes, where identical haplotypes were inherited from each parent. The length of each run is determined partly by the number of generations since the common ancestor: offspring of cousin marriages have long runs of homozygosity (ROH), while the numerous shorter tracts relate to shared ancestry tens and hundreds of generations ago. Human populations have experienced a wide range of demographic histories and hold diverse cultural attitudes to consanguinity. In a global population dataset, genome-wide analysis of long and shorter ROH allows categorisation of the mainly indigenous populations sampled here into four major groups in which the majority of the population are inferred to have: (a) recent parental relatedness (south and west Asians); (b) shared parental ancestry arising hundreds to thousands of years ago through long term isolation and restricted effective population size (Ne), but little recent inbreeding (Oceanians); (c) both ancient and recent parental relatedness (Native Americans); and (d) only the background level of shared ancestry relating to continental Ne (predominantly urban Europeans and East Asians; lowest of all in sub-Saharan African agriculturalists), and the occasional cryptically inbred individual. Moreover, individuals can be positioned along axes representing this demographic historic space. Long runs of homozygosity are therefore a globally widespread and under-appreciated characteristic of our genomes, which record past consanguinity and population isolation and provide a distinctive record of the demographic history of an individual's ancestors. Individual ROH measures will also allow quantification of the disease risk arising from polygenic recessive effects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extended tracts of homozygosity in outbred human populations.

              Long tracts of consecutive homozygous single nucleotide polymorphisms (SNPs) can arise in the genome through a number of mechanisms. These include inbreeding in which an individual inherits chromosomal segments that are identical by descent from each parent. However, recombination and other processes break up chromosomal segments over generations. The longest tracts are therefore to be expected in populations with an appreciable degree of inbreeding. We examined the length, number and distribution of long tracts of homozygosity in the apparently outbred HapMap populations. We observed 1393 tracts exceeding 1 Mb in length among the 209 unrelated HapMap individuals. The longest was an uninterrupted run of 3922 homozygous SNPs spanning 17.9 Mb in a Japanese individual. We find that homozygous tracts are significantly more common in regions with high linkage disequilibrium and low recombination, and the location of tracts is similar across all populations. The Yoruba sample has the fewest long tracts per individual, consistent with a larger number of generations (and hence amount of recombination) since the founding of that population. Our results suggest that multiple-megabase-scale ancestral haplotypes persist in outbred human populations in broad genomic regions which have lower than average recombination rates. We observed three outlying individuals who have exceptionally long and numerous homozygous tracts that are not associated with recombination suppressed areas of the genome. We consider that this reflects a high level of relatedness in their ancestry which is too recent to have been influenced by the local recombination intensity. Possible alternative mechanisms and the implications of long homozygous tracts in the genome are discussed.
                Bookmark

                Author and article information

                Journal
                Animals (Basel)
                Animals (Basel)
                animals
                Animals : an Open Access Journal from MDPI
                MDPI
                2076-2615
                01 August 2019
                August 2019
                : 9
                : 8
                : 518
                Affiliations
                [1 ]Department of Animal Genetics, Breeding and Reproduction, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
                [2 ]Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
                Author notes
                Author information
                https://orcid.org/0000-0001-9582-5993
                Article
                animals-09-00518
                10.3390/ani9080518
                6720638
                31374971
                1bc082e3-c83a-4ab3-b10d-962f2ae2c3be
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 31 May 2019
                : 27 July 2019
                Categories
                Article

                runs of homozygosity,inbreeding coefficient,pig,candidate genes

                Comments

                Comment on this article