26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Research Progress on the Relationship between Atherosclerosis and Inflammation

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Atherosclerosis is a chronic inflammatory disease; unstable atherosclerotic plaque rupture, vascular stenosis, or occlusion caused by platelet aggregation and thrombosis lead to acute cardiovascular disease. Atherosclerosis-related inflammation is mediated by proinflammatory cytokines, inflammatory signaling pathways, bioactive lipids, and adhesion molecules. This review discusses the effects of inflammation and the systemic inflammatory signaling pathway on atherosclerosis, the role of related signaling pathways in inflammation, the formation of atherosclerosis plaques, and the prospects of treating atherosclerosis by inhibiting inflammation.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways.

          The glucagon-like peptide 1 receptor (GLP-1R) is believed to mediate glucoregulatory and cardiovascular effects of the incretin hormone GLP-1(7-36) (GLP-1), which is rapidly degraded by dipeptidyl peptidase-4 (DPP-4) to GLP-1(9-36), a truncated metabolite generally thought to be inactive. Novel drugs for the treatment of diabetes include analogues of GLP-1 and inhibitors of DPP-4; however, the cardiovascular effects of distinct GLP-1 peptides have received limited attention. Here, we show that endothelium and cardiac and vascular myocytes express a functional GLP-1R as GLP-1 administration increased glucose uptake, cAMP and cGMP release, left ventricular developed pressure, and coronary flow in isolated mouse hearts. GLP-1 also increased functional recovery and cardiomyocyte viability after ischemia-reperfusion injury of isolated hearts and dilated preconstricted arteries from wild-type mice. Unexpectedly, many of these actions of GLP-1 were preserved in Glp1r(-/-) mice. Furthermore, GLP-1(9-36) administration during reperfusion reduced ischemic damage after ischemia-reperfusion and increased cGMP release, vasodilatation, and coronary flow in wild-type and Glp1r(-/-) mice, with modest effects on glucose uptake. Studies using a DPP-4-resistant GLP-1R agonist and inhibitors of DPP-4 and nitric oxide synthase showed that the effects of GLP-1(7-36) were partly mediated by GLP-1(9-36) through a nitric oxide synthase-requiring mechanism that is independent of the known GLP-1R. These data describe cardioprotective actions of GLP-1(7-36) mediated through the known GLP-1R and novel cardiac and vascular actions of GLP-1(7-36) and its metabolite GLP-1(9-36) independent of the known GLP-1R. Our data suggest that the extent to which GLP-1 is metabolized to GLP-1(9-36) may have functional implications in the cardiovascular system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage.

            Observational studies of necrotic core progression identify intraplaque hemorrhage as a critical factor in atherosclerotic plaque growth and destabilization. The rapid accumulation of erythrocyte membranes causes an abrupt change in plaque substrate characterized by increased free cholesterol within the lipid core and excessive macrophage infiltration. Neoangiogenesis is associated closely with plaque progression, and microvascular incompetence is a likely source of intraplaque hemorrhage. Intimal neovascularization is predominantly thought to arise from the adventitia, where there are a plethora of pre-existing vasa vasorum. In lesions that have early necrotic cores, the majority of vessels invading from the adventitia occur at specific sites of medial wall disruption. A breech in the medial wall likely facilitates the rapid in-growth of microvessels from the adventitia, and exposure to an atherosclerotic environment stimulates abnormal vascular development characterized by disorganized branching and immature endothelial tubes with "leaky" imperfect linings. This network of immature blood vessels is a viable source of intraplaque hemorrhage providing erythrocyte-derived phospholipids and free cholesterol. The rapid change in plaque substrate caused by the excessive accumulation of erythrocytes may promote the transition from a stable to an unstable lesion. This review discusses the potential role of intraplaque vasa vasorum in lesion instability as it relates to plaque rupture.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Atherosclerosis: Basic Mechanisms

              Circulation, 91(9), 2488-2496
                Bookmark

                Author and article information

                Journal
                Biomolecules
                Biomolecules
                biomolecules
                Biomolecules
                MDPI
                2218-273X
                23 August 2018
                September 2018
                : 8
                : 3
                : 80
                Affiliations
                Laboratory Animal Center, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; zhuyuhua116@ 123456126.com (Y.Z.); xxuemay@ 123456163.com (X.X.); wangzhenzhen620@ 123456163.com (Z.W.); m15062145239@ 123456163.com (Y.B.); chenquangang@ 123456xzhmu.edu.cn (Q.C.); hxf229791518@ 123456163.com (X.H.); tangdq@ 123456xzhmu.edu.cn (D.T.)
                Author notes
                [* ]Correspondence: crj@ 123456xzhmu.edu.cn ; Tel./Fax: +86-0516-8326-2060
                [†]

                These authors contributed equally to the work.

                Article
                biomolecules-08-00080
                10.3390/biom8030080
                6163673
                30142970
                1bc0fb8d-2df1-4410-9662-7e3f2f09626d
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 14 June 2018
                : 17 August 2018
                Categories
                Review

                atherosclerosis,inflammation,anti-inflammatory therapy

                Comments

                Comment on this article