9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The B-box module of CYLD is responsible for its intermolecular interaction and cytoplasmic localization

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The tumor suppressor protein cylindromatosis (CYLD), as a microtubule-associated deubiquitinase, plays a pivotal role in a wide range of cellular activities, including innate immunity, cell division, and ciliogenesis. Structural characterization reveals a small zinc-binding B-box inserted within the ubiquitin specific protease (USP) domain of CYLD; however, the exact role for this module remains yet to be elucidated. Here we identify a critical role for the B-box in facilitating the intermolecular interaction and subcellular localization of CYLD. By co-immunoprecipitation assays we uncover that CYLD has the ability to form an intermolecular complex. Native gel electrophoresis analysis and pull down assays show that the USP domain of CYLD is essential for its intermolecular interaction. Further investigation reveals that deletion of the B-box from the USP domain disrupts the intermolecular interaction of CYLD. Importantly, although loss of the B-box has no obvious effect on the deubiquitinase activity of CYLD, it abolishes the USP domain-mediated retention of CYLD in the cytoplasm. Collectively, these data demonstrate an important role for the B-box module of CYLD in mediating its assembly and subcellular distribution, which might be related to the functions of CYLD in various biological processes.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-kappaB signaling.

          Mutations in the CYLD gene cause tumors of hair-follicle keratinocytes. The CYLD gene encodes a deubiquitinase that removes lysine 63-linked ubiquitin chains from TRAF2 and inhibits p65/p50 NF-kappaB activation. Here we show that mice lacking Cyld are highly susceptible to chemically induced skin tumors. Cyld-/- tumors and keratinocytes treated with 12-O-tetradecanoylphorbol-13 acetate (TPA) or UV light are hyperproliferative and have elevated cyclin D1 levels. The cyclin D1 elevation is caused not by increased p65/p50 action but rather by increased nuclear activity of Bcl-3-associated NF-kappaB p50 and p52. In Cyld+/+ keratinocytes, TPA or UV light triggers the translocation of Cyld from the cytoplasm to the perinuclear region, where Cyld binds and deubiquitinates Bcl-3, thereby preventing nuclear accumulation of Bcl-3 and p50/Bcl-3- or p52/Bcl-3-dependent proliferation. These data indicate that, depending on the external signals, Cyld can negatively regulate different NF-kappaB pathways; inactivation of TRAF2 controls survival and inflammation, while inhibition of Bcl-3 controls proliferation and tumor growth.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module.

            The tumor suppressor CYLD antagonizes NF-kappaB and JNK signaling by disassembly of Lys63-linked ubiquitin chains synthesized in response to cytokine stimulation. Here we describe the crystal structure of the CYLD USP domain, revealing a distinctive architecture that provides molecular insights into its specificity toward Lys63-linked polyubiquitin. We identify regions of the USP domain responsible for this specificity and demonstrate endodeubiquitinase activity toward such chains. Pathogenic truncations of the CYLD C terminus, associated with the hypertrophic skin tumor cylindromatosis, disrupt the USP domain, accounting for loss of CYLD catalytic activity. A small zinc-binding B box domain, similar in structure to other crossbrace Zn-binding folds--including the RING domain found in E3 ubiquitin ligases--is inserted within the globular core of the USP domain. Biochemical and functional characterization of the B box suggests a role as a protein-interaction module that contributes to determining the subcellular localization of CYLD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              SPATA2 Links CYLD to LUBAC, Activates CYLD, and Controls LUBAC Signaling

              Summary The linear ubiquitin chain assembly complex (LUBAC) regulates immune signaling, and its function is regulated by the deubiquitinases OTULIN and CYLD, which associate with the catalytic subunit HOIP. However, the mechanism through which CYLD interacts with HOIP is unclear. We here show that CYLD interacts with HOIP via spermatogenesis-associated protein 2 (SPATA2). SPATA2 interacts with CYLD through its non-canonical PUB domain, which binds the catalytic CYLD USP domain in a CYLD B-box-dependent manner. Significantly, SPATA2 binding activates CYLD-mediated hydrolysis of ubiquitin chains. SPATA2 also harbors a conserved PUB-interacting motif that selectively docks into the HOIP PUB domain. In cells, SPATA2 is recruited to the TNF receptor 1 signaling complex and is required for CYLD recruitment. Loss of SPATA2 increases ubiquitination of LUBAC substrates and results in enhanced NOD2 signaling. Our data reveal SPATA2 as a high-affinity binding partner of CYLD and HOIP, and a regulatory component of LUBAC-mediated NF-κB signaling.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                1 August 2017
                7 February 2017
                : 8
                : 31
                : 50889-50895
                Affiliations
                1 Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
                2 State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
                Author notes
                Correspondence to: Min Liu, minliu@ 123456sdnu.edu.cn
                Article
                15142
                10.18632/oncotarget.15142
                5584213
                28881612
                1bc2f62c-71eb-484f-9b11-14ad46cb4d79
                Copyright: © 2017 Xie et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 30 November 2016
                : 11 January 2017
                Categories
                Research Paper

                Oncology & Radiotherapy
                cyld,intermolecular interaction,nf-κb,b-box,deubiquitinase
                Oncology & Radiotherapy
                cyld, intermolecular interaction, nf-κb, b-box, deubiquitinase

                Comments

                Comment on this article