29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Plate tectonic regulation of global marine animal diversity

      , ,
      Proceedings of the National Academy of Sciences
      Proceedings of the National Academy of Sciences

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Valentine and Moores [Valentine JW, Moores EM (1970) Nature 228:657-659] hypothesized that plate tectonics regulates global biodiversity by changing the geographic arrangement of continental crust, but the data required to fully test the hypothesis were not available. Here, we use a global database of marine animal fossil occurrences and a paleogeographic reconstruction model to test the hypothesis that temporal patterns of continental fragmentation have impacted global Phanerozoic biodiversity. We find a positive correlation between global marine invertebrate genus richness and an independently derived quantitative index describing the fragmentation of continental crust during supercontinental coalescence-breakup cycles. The observed positive correlation between global biodiversity and continental fragmentation is not readily attributable to commonly cited vagaries of the fossil record, including changing quantities of marine rock or time-variable sampling effort. Because many different environmental and biotic factors may covary with changes in the geographic arrangement of continental crust, it is difficult to identify a specific causal mechanism. However, cross-correlation indicates that the state of continental fragmentation at a given time is positively correlated with the state of global biodiversity for tens of millions of years afterward. There is also evidence to suggest that continental fragmentation promotes increasing marine richness, but that coalescence alone has only a small negative or stabilizing effect. Together, these results suggest that continental fragmentation, particularly during the Mesozoic breakup of the supercontinent Pangaea, has exerted a first-order control on the long-term trajectory of Phanerozoic marine animal diversity.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: not found
          • Article: not found

          Assembly, configuration, and break-up history of Rodinia: A synthesis

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Mesozoic marine revolution: evidence from snails, predators and grazers

            Tertiary and Recent marine gastropods include in their ranks a complement of mechanically sturdy forms unknown in earlier epochs. Open coiling, planispiral coiling, and umbilici detract from shell sturdiness, and were commoner among Paleozoic and Early Mesozoic gastropods than among younger forms. Strong external sculpture, narrow elongate apertures, and apertural dentition promote resistance to crushing predation and are primarily associated with post-Jurassic mesogastropods, neogastropods, and neritaceans. The ability to remodel the interior of the shell, developed primarily in gastropods with a non-nacreous shell structure, has contributed greatly to the acquisition of these antipredatory features.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A factor analytic description of the Phanerozoic marine fossil record

              Data on numbers of marine families within 91 metazoan classes known from the Phanerozoic fossil record are analyzed. The distribution of the 2800 fossil families among the classes is very uneven, with most belonging to a small minority of classes. Similarly, the stratigraphic distribution of the classes is very uneven, with most first appearing early in the Paleozoic and with many of the smaller classes becoming extinct before the end of that era. However, despite this unevenness, aQ-mode factor analysis indicates that the structure of these data is rather simple. Only three factors are needed to account for more than 90% of the data. These factors are interpreted as reflecting the three great “evolutionary faunas” of the Phanerozoic marine record: a trilobite-dominated Cambrian fauna, a brachiopod-dominated later Paleozoic fauna, and a mollusc-dominated Mesozoic-Cenozoic, or “modern,” fauna. Lesser factors relate to slow taxonomic turnover within the major faunas through time and to unique aspects of particular taxa and times.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                May 30 2017
                May 30 2017
                May 30 2017
                May 15 2017
                : 114
                : 22
                : 5653-5658
                Article
                10.1073/pnas.1702297114
                5465924
                28507147
                1be51bc7-f3e0-48ba-8292-194595acc5cd
                © 2017

                Free to read

                http://www.pnas.org/site/misc/userlicense.xhtml

                History

                Comments

                Comment on this article