0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Tissue Kidney Injury Molecule-1 Expression in the Prediction of Renal Function for Several Years after Kidney Biopsy

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives. Retrospective study was designed to examine the importance of tissue kidney injury molecule-1 (KIM-1) expression in predicting kidney function in sixty patients (27 males) aged 34.15 ± 12.23 years with different kidney diseases over three years after kidney biopsy. Materials and Methods. Tissue KIM-1 expression was determined immunohistochemically and KIM-1 staining was scored semiquantitatively, as well as tubulointerstitialis (TIN), inflammation, atrophy, and fibrosis. Kidney function (MDRD formula) and proteinuria/day were evaluated at the time of biopsy (GFR0) and 6, 12, 24, and 36 months later. Results. Significantly positive correlations between tissue KIM-1 expression and age ( r = 0.313), TIN inflammation ( r = 0.456), fibrosis ( r = 0.317), and proteinuria at 6 months ( r = 0.394) as well as negative correlations with GFR0 ( r = −0.572), GFR6 ( r = −0.442), GFR24 ( r = −0.398), and GFR36 ( r = −0.412) were found. Meanwhile, TIN inflammation was the best predictor of all measured kidney functions during three years, while tissue KIM-1 expression ( P = 0.016) was a predictor only at 6 months after biopsy. Conclusion. Tissue KIM-1 expression significantly predicts kidney function solely at 6 months after biopsy, when the effects of immune and nonimmune treatments are the strongest.

          Related collections

          Most cited references135

          • Record: found
          • Abstract: found
          • Article: not found

          Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury.

          We report the identification of rat and human cDNAs for a type 1 membrane protein that contains a novel six-cysteine immunoglobulin-like domain and a mucin domain; it is named kidney injury molecule-1 (KIM-1). Structurally, KIM-1 is a member of the immunoglobulin gene superfamily most reminiscent of mucosal addressin cell adhesion molecule 1 (MAdCAM-1). Human KIM-1 exhibits homology to a monkey gene, hepatitis A virus cell receptor 1 (HAVcr-1), which was identified recently as a receptor for the hepatitis A virus. KIM-1 mRNA and protein are expressed at a low level in normal kidney but are increased dramatically in postischemic kidney. In situ hybridization and immunohistochemistry revealed that KIM-1 is expressed in proliferating bromodeoxyuridine-positive and dedifferentiated vimentin-positive epithelial cells in regenerating proximal tubules. Structure and expression data suggest that KIM-1 is an epithelial cell adhesion molecule up-regulated in the cells, which are dedifferentiated and undergoing replication. KIM-1 may play an important role in the restoration of the morphological integrity and function to postischemic kidney.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells.

            Following injury, the clearance of apoptotic and necrotic cells is necessary for mitigation and resolution of inflammation and tissue repair. In addition to macrophages, which are traditionally assigned to this task, neighboring epithelial cells in the affected tissue are postulated to contribute to this process. Kidney injury molecule-1 (KIM-1 or TIM-1) is an immunoglobulin superfamily cell-surface protein not expressed by cells of the myeloid lineage but highly upregulated on the surface of injured kidney epithelial cells. Here we demonstrate that injured kidney epithelial cells assumed attributes of endogenous phagocytes. Confocal images confirm internalization of apoptotic bodies within KIM-1-expressing epithelial cells after injury in rat kidney tubules in vivo. KIM-1 was directly responsible for phagocytosis in cultured primary rat tubule epithelial cells and also porcine and canine epithelial cell lines. KIM-1 was able to specifically recognize apoptotic cell surface-specific epitopes phosphatidylserine, and oxidized lipoproteins, expressed by apoptotic tubular epithelial cells. Thus, KIM-1 is the first nonmyeloid phosphatidylserine receptor identified to our knowledge that transforms epithelial cells into semiprofessional phagocytes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tubular kidney injury molecule-1 (KIM-1) in human renal disease.

              KIM-1, a transmembrane tubular protein with unknown function, is undetectable in normal kidneys, but is markedly induced in experimental renal injury. The KIM-1 ectodomain is cleaved, detectable in urine, and reflects renal damage. KIM-1 expression in human renal biopsies and its correlation with urinary KIM-1 (uKIM-1) is unknown. In biopsies from various renal diseases (n = 102) and controls (n = 7), the fraction of KIM-1 positive tubules and different renal damage parameters were scored. Double labelling was performed for KIM-1 with macrophages (MØ), alpha-smooth muscle actin (alpha-SMA), proximal (aquaporin-1) and distal (E-cadherin) tubular markers and a dedifferentiation marker (vimentin). uKIM-1 at the time of biopsy (n = 53) was measured by ELISA. Renal KIM-1 was significantly increased in all diseases versus controls (p < 0.05), except minimal change. KIM-1 was primarily expressed at the luminal side of dedifferentiated proximal tubules, in areas with fibrosis (alpha-SMA) and inflammation (MØ). Independent of the disease, renal KIM-1 correlated positively with renal damage, negatively with renal function, but not with proteinuria. uKIM-1 was increased in renal patients versus controls (p < 0.001), including minimal change, and correlated positively with tissue KIM-1 and MØ, negatively with renal function, but not with proteinuria. In conclusion, KIM-1 is upregulated in renal disease and is associated with renal fibrosis and inflammation. uKIM-1 is also associated with inflammation and renal function, and reflects tissue KIM-1, indicating that it can be used as a non-invasive biomarker in renal disease. Copyright 2007 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
                Bookmark

                Author and article information

                Journal
                Dis Markers
                Dis. Markers
                DM
                Disease markers
                Hindawi Publishing Corporation
                0278-0240
                1875-8630
                2013
                27 October 2013
                : 35
                : 5
                : 567-572
                Affiliations
                1Clinic of Nephrology, Clinical Center of Serbia, Pasterova 2, 11 000 Belgrade, Serbia
                2School of Medicine, University of Belgrade, Serbia
                3Clinical Hospital Center Bezanijska Kosa, Belgrade, Serbia
                4Institute of Pathology, School of Medicine, University of Belgrade, Belgrade, Serbia
                5Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
                Author notes
                *Sanja Simic Ogrizovic: ssogrizovic@ 123456gmail.com

                Academic Editor: Giuseppe Murdaca

                Author information
                http://orcid.org/0000-0003-2938-9585
                Article
                10.1155/2013/183246
                3824354
                1bef3af9-f2e7-496c-8275-0f9a3c3e91c4
                Copyright © 2013 Sanja Simic Ogrizovic et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 June 2013
                : 7 October 2013
                Categories
                Research Article

                Comments

                Comment on this article