41
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Whole-Genome Analysis of Multienvironment or Multitrait QTL in MAGIC

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Multiparent Advanced Generation Inter-Cross (MAGIC) populations are now being utilized to more accurately identify the underlying genetic basis of quantitative traits through quantitative trait loci (QTL) analyses and subsequent gene discovery. The expanded genetic diversity present in such populations and the amplified number of recombination events mean that QTL can be identified at a higher resolution. Most QTL analyses are conducted separately for each trait within a single environment. Separate analysis does not take advantage of the underlying correlation structure found in multienvironment or multitrait data. By using this information in a joint analysis—be it multienvironment or multitrait — it is possible to gain a greater understanding of genotype- or QTL-by-environment interactions or of pleiotropic effects across traits. Furthermore, this can result in improvements in accuracy for a range of traits or in a specific target environment and can influence selection decisions. Data derived from MAGIC populations allow for founder probabilities of all founder alleles to be calculated for each individual within the population. This presents an additional layer of complexity and information that can be utilized to identify QTL. A whole-genome approach is proposed for multienvironment and multitrait QTL analysis in MAGIC. The whole-genome approach simultaneously incorporates all founder probabilities at each marker for all individuals in the analysis, rather than using a genome scan. A dimension reduction technique is implemented, which allows for high-dimensional genetic data. For each QTL identified, sizes of effects for each founder allele, the percentage of genetic variance explained, and a score to reflect the strength of the QTL are found. The approach was demonstrated to perform well in a small simulation study and for two experiments, using a wheat MAGIC population.

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          A simple regression method for mapping quantitative trait loci in line crosses using flanking markers.

          The use of flanking marker methods has proved to be a powerful tool for the mapping of quantitative trait loci (QTL) in the segregating generations derived from crosses between inbred lines. Methods to analyse these data, based on maximum-likelihood, have been developed and provide good estimates of QTL effects in some situations. Maximum-likelihood methods are, however, relatively complex and can be computationally slow. In this paper we develop methods for mapping QTL based on multiple regression which can be applied using any general statistical package. We use the example of mapping in an F(2) population and show that these regression methods produce very similar results to those obtained using maximum likelihood. The relative simplicity of the regression methods means that models with more than a single QTL can be explored and we give examples of two lined loci and of two interacting loci. Other models, for example with more than two QTL, with environmental fixed effects, with between family variance or for threshold traits, could be fitted in a similar way. The ease, speed of application and generality of regression methods for flanking marker analysis, and the good estimates they obtain, suggest that they should provide the method of choice for the analysis of QTL mapping data from inbred line crosses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A method for fine mapping quantitative trait loci in outbred animal stocks.

            High-resolution mapping of quantitative trait loci (QTL) in animals has proved to be difficult because the large effect sizes detected in crosses between inbred strains are often caused by numerous linked QTLs, each of small effect. In a study of fearfulness in mice, we have shown it is possible to fine map small-effect QTLs in a genetically heterogeneous stock (HS). This strategy is a powerful general method of fine mapping QTLs, provided QTLs detected in crosses between inbred strains that formed the HS can be reliably detected in the HS. We show here that single-marker association analysis identifies only two of five QTLs expected to be segregating in the HS and apparently limits the strategy's usefulness for fine mapping. We solve this problem with a multipoint analysis that assigns the probability that an allele descends from each progenitor in the HS. The analysis does not use pedigrees but instead requires information about the HS founder haplotypes. With this method we mapped all three previously undetected loci [chromosome (Chr.) 1 logP 4.9, Chr. 10 logP 6.0, Chr. 15 logP 4.0]. We show that the reason for the failure of single-marker association to detect QTLs is its inability to distinguish opposing phenotypic effects when they occur on the same marker allele. We have developed a robust method of fine mapping QTLs in genetically heterogeneous animals and suggest it is now cost effective to undertake genomewide high-resolution analysis of complex traits in parallel on the same set of mice.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding

              Background This article describes the development of Multi-parent Advanced Generation Inter-Cross populations (MAGIC) in rice and discusses potential applications for mapping quantitative trait loci (QTLs) and for rice varietal development. We have developed 4 multi-parent populations: indica MAGIC (8 indica parents); MAGIC plus (8 indica parents with two additional rounds of 8-way F1 inter-crossing); japonica MAGIC (8 japonica parents); and Global MAGIC (16 parents – 8 indica and 8 japonica). The parents used in creating these populations are improved varieties with desirable traits for biotic and abiotic stress tolerance, yield, and grain quality. The purpose is to fine map QTLs for multiple traits and to directly and indirectly use the highly recombined lines in breeding programs. These MAGIC populations provide a useful germplasm resource with diverse allelic combinations to be exploited by the rice community. Results The indica MAGIC population is the most advanced of the MAGIC populations developed thus far and comprises 1328 lines produced by single seed descent (SSD). At the S4 stage of SSD a subset (200 lines) of this population was genotyped using a genotyping-by-sequencing (GBS) approach and was phenotyped for multiple traits, including: blast and bacterial blight resistance, salinity and submergence tolerance, and grain quality. Genome-wide association mapping identified several known major genes and QTLs including Sub1 associated with submergence tolerance and Xa4 and xa5 associated with resistance to bacterial blight. Moreover, the genome-wide association study (GWAS) results also identified potentially novel loci associated with essential traits for rice improvement. Conclusion The MAGIC populations serve a dual purpose: permanent mapping populations for precise QTL mapping and for direct and indirect use in variety development. Unlike a set of naturally diverse germplasm, this population is tailor-made for breeders with a combination of useful traits derived from multiple elite breeding lines. The MAGIC populations also present opportunities for studying the interactions of genome introgressions and chromosomal recombination. Electronic supplementary material The online version of this article (doi:10.1186/1939-8433-6-11) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Journal
                G3 (Bethesda)
                Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes|Genomes|Genetics
                Genetics Society of America
                2160-1836
                01 September 2014
                September 2014
                : 4
                : 9
                : 1569-1584
                Affiliations
                [* ]Computational Informatics and Food Futures National Research Flagship, CSIRO, Atherton, QLD 4883, Australia
                []School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia
                []Plant Industry and Food Futures National Research Flagship, CSIRO, Canberra, ACT 2601, Australia
                [§ ]Computational Informatics and Food Futures National Research Flagship, CSIRO, Canberra, ACT 2601, Australia
                Author notes

                Supporting information is available online at http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.114.012971/-/DC1.

                [1 ]Corresponding author: CSIRO Digital Productivity and Services, Maunds Rd., Atherton, QLD 4883, Australia. E-mail: Ari.Verbyla@ 123456csiro.au
                Article
                GGG_012971
                10.1534/g3.114.012971
                4169149
                25237109
                1c0a3967-0102-4630-858a-604e6bb70842
                Copyright © 2014 Verbyla et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution Unported License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 February 2014
                : 25 May 2014
                Page count
                Pages: 16
                Categories
                Multiparental Populations
                Custom metadata
                v1

                Genetics
                mixed models,multienvironment,multitrait,qtl,wgaim,multiparent advanced generation inter-cross (magic),multiparental populations,mpp

                Comments

                Comment on this article