261
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Matrix-bound VEGF elicits more distinct vascular effects than soluble VEGF, including prolonged VEGFR2 activation with altered patterns of tyrosine activation and downstream enhancement of the p38/MAPK pathway.

          Abstract

          VEGF can be secreted in multiple isoforms with variable affinity for extracellular proteins and different abilities to induce vascular morphogenesis, but the molecular mechanisms behind these effects remain unclear. Here, we show molecular distinctions between signaling initiated from soluble versus matrix-bound VEGF, which mediates a sustained level of VEGFR2 internalization and clustering. Exposure of endothelial cells to matrix-bound VEGF elicits prolonged activation of VEGFR2 with differential phosphorylation of Y1214, and extended activation kinetics of p38. These events require association of VEGFR2 with β1 integrins. Matrix-bound VEGF also promotes reciprocal responses on β1 integrin by inducing its association with focal adhesions; a response that is absent upon exposure to soluble VEGF. Inactivation of β1 integrin blocks the prolonged phosphorylation of Y1214 and consequent activation of p38. Combined, these results indicate that when in the context of extracellular matrix, activation of VEGFR2 is distinct from that of soluble VEGF in terms of recruitment of receptor partners, phosphorylation kinetics, and activation of downstream effectors.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation.

          Hypertrophic chondrocytes in the epiphyseal growth plate express the angiogenic protein vascular endothelial growth factor (VEGF). To determine the role of VEGF in endochondral bone formation, we inactivated this factor through the systemic administration of a soluble receptor chimeric protein (Flt-(1-3)-IgG) to 24-day-old mice. Blood vessel invasion was almost completely suppressed, concomitant with impaired trabecular bone formation and expansion of hypertrophic chondrocyte zone. Recruitment and/or differentiation of chondroclasts, which express gelatinase B/matrix metalloproteinase-9, and resorption of terminal chondrocytes decreased. Although proliferation, differentiation and maturation of chondrocytes were apparently normal, resorption was inhibited. Cessation of the anti-VEGF treatment was followed by capillary invasion, restoration of bone growth, resorption of the hypertrophic cartilage and normalization of the growth plate architecture. These findings indicate that VEGF-mediated capillary invasion is an essential signal that regulates growth plate morphogenesis and triggers cartilage remodeling. Thus, VEGF is an essential coordinator of chondrocyte death, chondroclast function, extracellular matrix remodeling, angiogenesis and bone formation in the growth plate.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis.

            Intercellular junctions mediate adhesion and communication between adjoining endothelial and epithelial cells. In the endothelium, junctional complexes comprise tight junctions, adherens junctions, and gap junctions. The expression and organization of these complexes depend on the type of vessels and the permeability requirements of perfused organs. Gap junctions are communication structures, which allow the passage of small molecular weight solutes between neighboring cells. Tight junctions serve the major functional purpose of providing a "barrier" and a "fence" within the membrane, by regulating paracellular permeability and maintaining cell polarity. Adherens junctions play an important role in contact inhibition of endothelial cell growth, paracellular permeability to circulating leukocytes and solutes. In addition, they are required for a correct organization of new vessels in angiogenesis. Extensive research in the past decade has identified several molecular components of the tight and adherens junctions, including integral membrane and intracellular proteins. These proteins interact both among themselves and with other molecules. Here, we review the individual molecules of junctions and their complex network of interactions. We also emphasize how the molecular architectures and interactions may represent a mechanistic basis for the function and regulation of junctions, focusing on junction assembly and permeability regulation. Finally, we analyze in vivo studies and highlight information that specifically relates to the role of junctions in vascular endothelial cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium.

              The vascular endothelial growth factor (VEGF) and its high-affinity binding receptors, the tyrosine kinases Flt-1 and Flk-1, are thought to be important for the development of embryonic vasculature. Here we report that Flt-1 is essential for the organization of embryonic vasculature, but is not essential for endothelial cell differentiation. Mouse embryos homozygous for a targeted mutation in the flt-1 locus, flt-1lcz, formed endothelial cells in both embryonic and extra-embryonic regions, but assembled these cells into abnormal vascular channels and died in utero at mid-somite stages. At earlier stages, the blood islands of flt-1lcz homozygotes were abnormal, with angioblasts in the interior as well as on the periphery. We suggest that the Flt-1 signalling pathway may regulate normal endothelial cell-cell or cell-matrix interactions during vascular development.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                22 February 2010
                : 188
                : 4
                : 595-609
                Affiliations
                [1 ]Department of Molecular, Cellular, and Developmental Biology , [2 ]Department of Chemical and Biomolecular Engineering , [3 ]Molecular Biology Institute , and [4 ]Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095
                Author notes
                Correspondence to Luisa Iruela-Arispe: arispe@ 123456mcdb.ucla.edu

                A. Luque’s present address is Fundacion Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernandez Almagro 3, E-28029 Madrid, Spain.

                S. Lee’s present address is Burnham Institute for Medical Research, Room 4109B, 10901 North Torrey Pines Road, La Jolla, CA 92037.

                Article
                200906044
                10.1083/jcb.200906044
                2828913
                20176926
                1c0affff-aeb6-4968-8e98-5b59970737da
                © 2010 Chen et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 8 June 2009
                : 26 January 2010
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article