8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Antimicrobial Activity of Apple, Hibiscus, Olive, and Hydrogen Peroxide Formulations against Salmonella enterica on Organic Leafy Greens

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Salmonella enterica is one of the most common bacterial pathogens implicated in foodborne outbreaks involving fresh produce in the last decade. In an effort to discover natural antimicrobials for use on fresh produce, the objective of the present study was to evaluate the effectiveness of different antimicrobial plant extract–concentrate formulations on four types of organic leafy greens inoculated with S. enterica serovar Newport. The leafy greens tested included organic romaine and iceberg lettuce, and organic adult and baby spinach. Each leaf sample was washed, dip inoculated with Salmonella Newport (106 CFU/ml), and dried. Apple and olive extract formulations were prepared at 1, 3, and 5% concentrations, and hibiscus concentrates were prepared at 10, 20, and 30%. Inoculated leaves were immersed in the treatment solution for 2 min and individually incubated at 4°C. After incubation, samples were taken on days 0, 1, and 3 for enumeration of survivors. Our results showed that the antimicrobial activity was both concentration and time dependent. Olive extract exhibited the greatest antimicrobial activity, resulting in 2- to 3-log CFU/g reductions for each concentration and type of leafy green by day 3. Apple extract showed 1- to 2-log CFU/g reductions by day 3 on various leafy greens. Hibiscus concentrate showed an overall reduction of 1 log CFU/g for all leafy greens. The maximum reduction by hydrogen peroxide (3%) was about 1 log CFU/g. The antimicrobial activity was also tested on the background microflora of organic leafy greens, and reductions ranged from 0 to 2.8 log. This study demonstrates the potential of natural plant extract formulations to inactivate Salmonella Newport on organic leafy greens.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica.

          An improved method of sample preparation was used in a microplate assay to evaluate the bactericidal activity levels of 96 essential oils and 23 oil compounds against Campylobacter jejuni, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica obtained from food and clinical sources. Bactericidal activity (BA50) was defined as the percentage of the sample in the assay mixture that resulted in a 50% decrease in CFU relative to a buffer control. Twenty-seven oils and 12 compounds were active against all four species of bacteria. The oils that were most active against C. jejuni (with BA50 values ranging from 0.003 to 0.009) were marigold, ginger root, jasmine, patchouli, gardenia, cedarwood, carrot seed, celery seed, mugwort, spikenard, and orange bitter oils; those that were most active against E. coli (with BA50 values ranging from 0.046 to 0.14) were oregano, thyme, cinnamon, palmarosa, bay leaf, clove bud, lemon grass, and allspice oils; those that were most active against L monocytogenes (with BA50 values ranging from 0.057 to 0.092) were gardenia, cedarwood, bay leaf, clove bud, oregano, cinnamon, allspice, thyme, and patchouli oils; and those that were most active against S. enterica (with BA50 values ranging from 0.045 to 0.14) were thyme, oregano, cinnamon, clove bud, allspice, bay leaf, palmarosa, and marjoram oils. The oil compounds that were most active against C. jejuni (with BA50 values ranging from 0.003 to 0.034) were cinnamaldehyde, estragole, carvacrol, benzaldehyde, citral, thymol, eugenol, perillaldehyde, carvone R, and geranyl acetate; those that were most active against E. coli (with BA50 values ranging from 0.057 to 0.28) were carvacrol, cinnamaldehyde, thymol, eugenol, salicylaldehyde, geraniol, isoeugenol, citral, perillaldehyde, and estragole; those that were most active against L monocytogenes (with BA50 values ranging from 0.019 to 0.43) were cinnamaldehyde, eugenol, thymol, carvacrol, citral, geraniol, perillaldehyde, carvone S, estragole, and salicylaldehyde; and those that were most active against S. enterica (with BA50 values ranging from 0.034 to 0.21) were thymol, cinnamaldehyde, carvacrol, eugenol, salicylaldehyde, geraniol, isoeugenol, terpineol, perillaldehyde, and estragole. The possible significance of these results with regard to food microbiology is discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fresh-cut product sanitation and wash water disinfection: problems and solutions.

            It is well known that fresh-cut processors usually rely on wash water sanitizers to reduce microbial counts in order to maintain quality and extend shelf-life of the end product. Water is a useful tool for reducing potential contamination but it can also transfer pathogenic microorganisms. Washing with sanitizers is important in fresh-cut produce hygiene, particularly removing soil and debris, but especially in water disinfection to avoid cross-contamination between clean and contaminated product. Most of the sanitizing solutions induce higher microbial reduction after washing when compared to water washing, but after storage, epiphytic microorganisms grow rapidly, reaching similar levels. In fact, despite the general idea that sanitizers are used to reduce the microbial population on the produce, their main effect is maintaining the microbial quality of the water. The use of potable water instead of water containing chemical disinfection agents for washing fresh-cut vegetables is being advocated in some European countries. However, the problems of using an inadequate sanitizer or even none are considered in this manuscript. The need for a standardized approach to evaluate and compare the efficiency of sanitizing agents is also presented. Most new alternative techniques accentuate the problems with chlorine suggesting that the industry should move away from this traditional disinfection agent. However, the use of chlorine based sanitizers are presented as belonging to the most effective and efficient sanitizers when adequate doses are used. In this review improvements in water disinfection and sanitation strategies, including a shower pre-washing step and a final rinse of the produce, are suggested.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antibacterial activities of plant essential oils and their components against Escherichia coli O157:H7 and Salmonella enterica in apple juice.

              We evaluated 17 plant essential oils and nine oil compounds for antibacterial activity against the foodborne pathogens Escherichia coli O157:H7 and Salmonella enterica in apple juices in a bactericidal assay in terms of % of the sample that resulted in a 50% decrease in the number of bacteria (BA(50)). The 10 compounds most active against E. coli (60 min BA(50) range in clear juice, 0.018-0.093%) were carvacrol, oregano oil, geraniol, eugenol, cinnamon leaf oil, citral, clove bud oil, lemongrass oil, cinnamon bark oil, and lemon oil. The corresponding compounds against S. enterica (BA(50) range, 0.0044-0.011%) were Melissa oil, carvacrol, oregano oil, terpeineol, geraniol, lemon oil, citral, lemongrass oil, cinnamon leaf oil, and linalool. The activity (i) was greater for S. enterica than for E. coli, (ii) increased with incubation temperature and storage time, and (iii) was not affected by the acidity of the juices. The antibacterial agents could be divided into two classes: fast-acting and slow-acting. High-performance liquid chromatography analysis showed that the bactericidal results are related to the composition of the oils. These studies provide information about new ways to protect apple juice and other foods against human pathogens.
                Bookmark

                Author and article information

                Journal
                Journal of Food Protection
                International Association for Food Protection
                0362-028X
                1944-9097
                October 01 2011
                October 01 2011
                : 74
                : 10
                : 1676-1683
                Affiliations
                [1 ]1Department of Veterinary Science and Microbiology, University of Arizona 1117, East Lowell Street, Tucson, Arizona 85721
                [2 ]2U.S. Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Building, 201, Beltsville Agricultural Research Center East, Beltsville, Maryland 20705
                [3 ]3Southern University Agricultural Research and Extension Center, Ashford O. Williams Hall, P.O. Box 10010, Baton Rouge, Louisiana 70813
                [4 ]4U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, 800 Buchanan Street, Albany, California 94710, USA
                Article
                10.4315/0362-028X.JFP-11-174
                1c2ba089-36bd-4754-a24e-73902a2ce8fb
                © 2011
                History

                Comments

                Comment on this article