Blog
About

59
views
0
recommends
+1 Recommend
1 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Computational and Informatic Advances for Reproducible Data Analysis in Neuroimaging

      1 , 1 , 2

      Annual Review of Biomedical Data Science

      Annual Reviews

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The reproducibility of scientific research has become a point of critical concern. We argue that openness and transparency are critical for reproducibility, and we outline an ecosystem for open and transparent science that has emerged within the human neuroimaging community. We discuss the range of open data-sharing resources that have been developed for neuroimaging data, as well as the role of data standards (particularly the brain imaging data structure) in enabling the automated sharing, processing, and reuse of large neuroimaging data sets. We outline how the open source Python language has provided the basis for a data science platform that enables reproducible data analysis and visualization. We also discuss how new advances in software engineering, such as containerization, provide the basis for greater reproducibility in data analysis. The emergence of this new ecosystem provides an example for many areas of science that are currently struggling with reproducibility.

          Related collections

          Most cited references 33

          • Record: found
          • Abstract: found
          • Article: not found

          The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).

          In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients-manually annotated by up to four raters-and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A whole brain fMRI atlas generated via spatially constrained spectral clustering.

            Connectivity analyses and computational modeling of human brain function from fMRI data frequently require the specification of regions of interests (ROIs). Several analyses have relied on atlases derived from anatomical or cyto-architectonic boundaries to specify these ROIs, yet the suitability of atlases for resting state functional connectivity (FC) studies has yet to be established. This article introduces a data-driven method for generating an ROI atlas by parcellating whole brain resting-state fMRI data into spatially coherent regions of homogeneous FC. Several clustering statistics are used to compare methodological trade-offs as well as determine an adequate number of clusters. Additionally, we evaluate the suitability of the parcellation atlas against four ROI atlases (Talairach and Tournoux, Harvard-Oxford, Eickoff-Zilles, and Automatic Anatomical Labeling) and a random parcellation approach. The evaluated anatomical atlases exhibit poor ROI homogeneity and do not accurately reproduce FC patterns present at the voxel scale. In general, the proposed functional and random parcellations perform equivalently for most of the metrics evaluated. ROI size and hence the number of ROIs in a parcellation had the greatest impact on their suitability for FC analysis. With 200 or fewer ROIs, the resulting parcellations consist of ROIs with anatomic homology, and thus offer increased interpretability. Parcellation results containing higher numbers of ROIs (600 or 1,000) most accurately represent FC patterns present at the voxel scale and are preferable when interpretability can be sacrificed for accuracy. The resulting atlases and clustering software have been made publicly available at: http://www.nitrc.org/projects/cluster_roi/. Copyright © 2011 Wiley Periodicals, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reproducible research in computational science.

               Roger Peng (2011)
              Computational science has led to exciting new developments, but the nature of the work has exposed limitations in our ability to evaluate published findings. Reproducibility has the potential to serve as a minimum standard for judging scientific claims when full independent replication of a study is not possible.
                Bookmark

                Author and article information

                Journal
                Annual Review of Biomedical Data Science
                Annu. Rev. Biomed. Data Sci.
                Annual Reviews
                2574-3414
                2574-3414
                July 20 2019
                July 20 2019
                : 2
                : 1
                : 119-138
                Affiliations
                [1 ]Department of Psychology, Stanford University, Stanford, California 94305, USA;
                [2 ]Parietal Team, Inria and NeuroSpin/CEA (Atomic Energy Commission), 91191 Gif/-sur-Yvette, France
                Article
                10.1146/annurev-biodatasci-072018-021237
                © 2019

                Comments

                Comment on this article