8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Periplasmic Chaperone Network of Campylobacter jejuni: Evidence that SalC (Cj1289) and PpiD (Cj0694) Are Involved in Maintaining Outer Membrane Integrity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The outer membrane (OM) of Gram-negative pathogenic bacteria is a key structure in host–pathogen interactions that contains a plethora of proteins, performing a range of functions including adhesion, nutrient uptake, export of effectors and interaction with innate and adaptive components of the immune system. In addition, the OM can exclude drugs and thus contribute to antimicrobial resistance. The OM of the food-borne pathogen Campylobacter jejuni contains porins, adhesins and other virulence factors that must be specifically localized to this membrane, but the protein sorting mechanisms involved are only partially understood. In particular, chaperones are required to ferry OM proteins across the periplasm after they emerge from the Sec translocation system. The SurA-related chaperone PEB4 (Cj0596) is the only protein with a proven role in OM biogenesis and integrity in C. jejuni. In this work, we have constructed a set of isogenic deletion mutants in genes encoding both known and predicted chaperones ( cj0596, cj0694, cj1069, cj1228c, and cj1289) using NCTC 11168H as the parental strain. These mutants were characterized using a range of assays to determine effects on growth, agglutination, biofilm formation, membrane permeability and hydrophobicity. We focused on Cj1289 and Cj0694, which our previous work suggested possessed both chaperone and peptidyl-proyl cis/trans isomerase (PPIase) domains. Mutants in either cj1289 or cj0694 showed growth defects, increased motility, agglutination and biofilm formation and severe OM permeability defects as measured by a lysozyme accessibility assay, that were comparable to those exhibited by the isogenic peb4 mutant. 2D-gel comparisons showed a general decrease in OM proteins in these mutants. We heterologously overproduced and purified Cj0694 and obtained evidence that this protein was an active PPIase, as judged by its acceleration of the refolding rate of reduced and alkylated ribonuclease T 1 and that it also possessed holdase-type chaperone activity. Cj0694 is most similar to the PpiD class of chaperones but is unusual in possessing PPIase activity. Taken together, our data show that in addition to PEB4, Cj1289 (SalC; Sur A- like chaperone) and Cj0694 (PpiD) are also key proteins involved in OM biogenesis and integrity in C. jejuni.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Campylobacter genotyping to determine the source of human infection.

          Campylobacter species cause a high proportion of bacterial gastroenteritis cases and are a significant burden on health care systems and economies worldwide; however, the relative contributions of the various possible sources of infection in humans are unclear. National-scale genotyping of Campylobacter species was used to quantify the relative importance of various possible sources of human infection. Multilocus sequence types were determined for 5674 isolates obtained from cases of human campylobacteriosis in Scotland from July 2005 through September 2006 and from 999 Campylobacter species isolates from 3417 contemporaneous samples from potential human infection sources. These data were supplemented with 2420 sequence types from other studies, representing isolates from a variety of sources. The clinical isolates were attributed to possible sources on the basis of their sequence types with use of 2 population genetic models, STRUCTURE and an asymmetric island model. The STRUCTURE and the asymmetric island models attributed most clinical isolates to chicken meat (58% and 78% of Campylobacter jejuni and 40% and 56% of Campylobacter coli isolates, respectively), identifying it as the principal source of Campylobacter infection in humans. Both models attributed the majority of the remaining isolates to ruminant sources, with relatively few isolates attributed to wild bird, environment, swine, and turkey sources. National-scale genotyping was a practical and efficient methodology for the quantification of the contributions of different sources to human Campylobacter infection. Combined with the knowledge that retail chicken is routinely contaminated with Campylobacter, these results are consistent with the view that the largest reductions in human campylobacteriosis in industrialized countries will come from interventions that focus on the poultry industry.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli.

            Integral beta-barrel proteins (OMPs) are a major class of outer membrane proteins in Gram-negative bacteria. In Escherichia coli, these proteins are synthesized in the cytoplasm, translocated across the inner membrane via the Sec machinery, and assembled in the outer membrane through an unknown mechanism that requires the outer membrane YaeT complex and the periplasmic chaperones SurA, DegP, and Skp. Here, we have established the relationship between these three chaperones providing insight into the mechanism of OMP biogenesis using depletion analysis. Depletion of SurA alone results in a marked decrease in outer membrane density, while the loss of DegP and Skp has no effect on outer membrane composition. Furthermore, we demonstrate that SurA and YaeT interact directly in vivo. Based on these results, we suggest that SurA is the primary chaperone responsible for the periplasmic transit of the bulk mass of OMPs to the YaeT complex. The role of Skp and DegP is amplified in the absence of SurA. Evidence presented suggests that DegP/Skp function to rescue OMPs that fall off the SurA pathway. The seemingly redundant periplasmic chaperones do function in parallel, but the relative importance of the primary function of each pathway depends on whether or not cells are under stress.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biogenesis of the gram-negative bacterial outer membrane.

              The cell envelope of gram-negative bacteria consists of two membranes, the inner and the outer membrane, that are separated by the periplasm. The outer membrane consists of phospholipids, lipopolysaccharides, integral membrane proteins, and lipoproteins. These components are synthesized in the cytoplasm or at the inner leaflet of the inner membrane and have to be transported across the inner membrane and through the periplasm to assemble eventually in the correct membrane. Recent studies in Neisseria meningitidis and Escherichia coli have led to the identification of several machineries implicated in these transport and assembly processes.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                28 March 2017
                2017
                : 8
                : 531
                Affiliations
                [1] 1Department of Molecular Biology and Biotechnology, The University of Sheffield Sheffield, UK
                [2] 2Faculty of Medicine, King Abdulaziz University Jeddah, Saudi Arabia
                Author notes

                Edited by: Odile Tresse, Oniris, France

                Reviewed by: Nichollas Edward Scott, University of Melbourne, Australia; William Miller, Agricultural Research (USDA), USA

                *Correspondence: David J. Kelly, d.kelly@ 123456sheffield.ac.uk

                This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2017.00531
                5368265
                1c33b192-77de-4eca-86c4-2694e5c00ca7
                Copyright © 2017 Taylor, Zakai and Kelly.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 January 2017
                : 14 March 2017
                Page count
                Figures: 6, Tables: 0, Equations: 1, References: 46, Pages: 14, Words: 0
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                campylobacter,outer membrane,periplasmic chaperone,ppid,sura,peb4,virk,htra
                Microbiology & Virology
                campylobacter, outer membrane, periplasmic chaperone, ppid, sura, peb4, virk, htra

                Comments

                Comment on this article