27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      NT-3 modulates BDNF and proBDNF levels in naïve and kindled rat hippocampus.

      Neurochemistry International
      Actins, metabolism, Animals, Blotting, Western, Brain-Derived Neurotrophic Factor, pharmacology, Cytochromes c, Densitometry, Down-Regulation, drug effects, Hippocampus, Kindling, Neurologic, physiology, Male, Neurotrophin 3, Protein Precursors, Rats, Rats, Long-Evans, Receptor, trkA, Receptor, trkC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Both mature and precursor forms of neurotrophins regulate nerve development, survival and plasticity. Brain-derived neurotrophic factor (BDNF) synthesis and secretion in turn are regulated by neuronal activity, such as epilepsy. Further, neurotrophins themselves are regulated by neurotrophin levels. Neurotrophin-3 (NT-3) and BDNF in particular can be co-expressed and each can regulate the levels of the other. This regulation is thought to be mediated through receptor tyrosine kinase (Trk) activity. It is not known whether this neurotrophin-neurotrophin interaction occurs in hippocampal tissue in vivo, or how it is influenced by neuronal activation. In this study, we explored the reciprocal influences of intraventricular infusions of NT-3 and BDNF in naïve and kindled hippocampi of rats using Western blotting. We confirm that hippocampal kindling resulted in a significant increase in levels of BDNF both in cytochrome C (control) infused and NT-3 infused kindled rats. However, NT-3 infusion significantly reduced BDNF levels in both kindled and non-kindled hippocampi compared to their cytochrome C infused counterparts. These results are consistent with our earlier studies demonstrating lowered levels of TrkA and TrkC (NGF modulates BDNF levels via TrkA) following chronic NT-3 infusion. Although kindling led to an increase in BDNF, this was not accompanied by any detectable change in the levels of proBDNF. However, there was a significant increase in proBDNF following NT-3 infusions, suggesting NT-3 may reduce proBDNF processing. In contrast, neither NT-3 nor proNT-3 levels were affected by kindling or chronic BDNF infusions, consistent with down-regulation of TrkB by chronic BDNF infusion. Thus, modulation of BDNF by NT-3, likely mediated by Trk receptors, occurs in naïve and kindled adult rat hippocampus.

          Related collections

          Author and article information

          Comments

          Comment on this article