10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      High thermal conductivity graphite nanoplatelet/UHMWPE nanocomposites

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          High thermal conductivity graphite nanoplatelets/ultra high molecular weight polyethylene (GNPs/UHMWPE) nanocomposites are fabricated via mechanical ball milling followed by a hot-pressing method.

          Abstract

          High thermal conductivity graphite nanoplatelet/ultra-high molecular weight polyethylene (GNPs/UHMWPE) nanocomposites are fabricated via mechanical ball milling followed by a hot-pressing method. The GNPs are located at the interface of the UHMWPE matrix. The thermal conductivity coefficient of the GNPs/UHMWPE nanocomposite is greatly improved to 4.624 W m −1 K −1 with 21.4 vol% GNPs, 9 times higher than that of the original UHMWPE matrix. The significantly high improvement of the thermal conductivity is ascribed to the formation of multidimensional thermally conductive GNPs–GNPs networks, and the GNPs have a strong ability to form continuous thermally conductive networks. The method of cooling-pressing on the machine is more beneficial for the improvement of the thermal conductivity, by increasing the crystallinity of the UHMWPE matrix. Furthermore, the thermal stabilities of the GNPs/UHMWPE nanocomposites are increased with increasing addition of GNPs.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Universal Dynamic Conductivity and Quantized Visible Opacity of Suspended Graphene

          We show that the optical transparency of suspended graphene is defined by the fine structure constant, alpha, the parameter that describes coupling between light and relativistic electrons and is traditionally associated with quantum electrodynamics rather than condensed matter physics. Despite being only one atom thick, graphene is found to absorb a significant (pi times alpha=2.3%) fraction of incident white light, which is a consequence of graphene's unique electronic structure. This value translates into universal dynamic conductivity G =e^2/4h_bar within a few percent accuracy.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of chemical bonding on heat transport across interfaces.

              Interfaces often dictate heat flow in micro- and nanostructured systems. However, despite the growing importance of thermal management in micro- and nanoscale devices, a unified understanding of the atomic-scale structural features contributing to interfacial heat transport does not exist. Herein, we experimentally demonstrate a link between interfacial bonding character and thermal conductance at the atomic level. Our experimental system consists of a gold film transfer-printed to a self-assembled monolayer (SAM) with systematically varied termination chemistries. Using a combination of ultrafast pump-probe techniques (time-domain thermoreflectance, TDTR, and picosecond acoustics) and laser spallation experiments, we independently measure and correlate changes in bonding strength and heat flow at the gold-SAM interface. For example, we experimentally demonstrate that varying the density of covalent bonds within this single bonding layer modulates both interfacial stiffness and interfacial thermal conductance. We believe that this experimental system will enable future quantification of other interfacial phenomena and will be a critical tool to stimulate and validate new theories describing the mechanisms of interfacial heat transport. Ultimately, these findings will impact applications, including thermoelectric energy harvesting, microelectronics cooling, and spatial targeting for hyperthermal therapeutics.
                Bookmark

                Author and article information

                Journal
                RSCACL
                RSC Advances
                RSC Adv.
                Royal Society of Chemistry (RSC)
                2046-2069
                2015
                2015
                : 5
                : 46
                : 36334-36339
                Affiliations
                [1 ]Key Laboratory of Space Applied Physics and Chemistry
                [2 ]Ministry of Education
                [3 ]Department of Applied Chemistry
                [4 ]School of Science
                [5 ]Northwestern Polytechnical University
                Article
                10.1039/C5RA03284A
                1c4466cc-b363-4dfa-9894-991bdddf64d1
                © 2015
                History

                Comments

                Comment on this article