3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Bacterial Autoimmunity Due to a Restriction-Modification System.

      Current biology : CB
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Restriction-modification (RM) systems represent a minimal and ubiquitous biological system of self/non-self discrimination in prokaryotes [1], which protects hosts from exogenous DNA [2]. The mechanism is based on the balance between methyltransferase (M) and cognate restriction endonuclease (R). M tags endogenous DNA as self by methylating short specific DNA sequences called restriction sites, whereas R recognizes unmethylated restriction sites as non-self and introduces a double-stranded DNA break [3]. Restriction sites are significantly underrepresented in prokaryotic genomes [4-7], suggesting that the discrimination mechanism is imperfect and occasionally leads to autoimmunity due to self-DNA cleavage (self-restriction) [8]. Furthermore, RM systems can promote DNA recombination [9] and contribute to genetic variation in microbial populations, thus facilitating adaptive evolution [10]. However, cleavage of self-DNA by RM systems as elements shaping prokaryotic genomes has not been directly detected, and its cause, frequency, and outcome are unknown. We quantify self-restriction caused by two RM systems of Escherichia coli and find that, in agreement with levels of restriction site avoidance, EcoRI, but not EcoRV, cleaves self-DNA at a measurable rate. Self-restriction is a stochastic process, which temporarily induces the SOS response, and is followed by DNA repair, maintaining cell viability. We find that RM systems with higher restriction efficiency against bacteriophage infections exhibit a higher rate of self-restriction, and that this rate can be further increased by stochastic imbalance between R and M. Our results identify molecular noise in RM systems as a factor shaping prokaryotic genomes.

          Related collections

          Author and article information

          Journal
          26804559
          10.1016/j.cub.2015.12.041

          Comments

          Comment on this article

          scite_