14
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Editorial: Signaling in the Phytomicrobiome

      editorial

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Over the last decade we have come to appreciate that there are close relationships between all “higher” organisms and communities of microbes. The human microbiome and its role in human metabolism and health, is being widely investigated. In a similar way, plant-associated microbial communities are now coming under scrutiny. Plants have probably had associated microbes since they colonized the land about 0.5 billion years ago. The terrestrial environment presented water and nutrient acquisition challenges resulting in the evolution of sophisticated plant root systems. However, associated microbes also help address these hurdles, and at lesser energetic costs (Smith et al.). Because most energy enters the terrestrial biosphere at the green leaves of plants, organisms associated with plants have advantageous access to reduced carbon from photosynthesis. So, when plants prosper, associated microorganisms benefit. Microbes are associated with all plant structures, but roots are in constant contact with generally humid, microbe-laden soil, and so are associated with the greatest number and range of microbes. The earliest evidence we have of plant-microbe interactions are fossils showing mycorrhizal relationships from almost 400 million years ago (Smith et al.). We now realize that a plant growing under field conditions is community, not just an individual. While the circumstances of associated microbes are improved when the plants are doing well, the plants must at the same time control their associated microbes, to minimize the presence of those that are potentially detrimental. The microorganisms that colonize plants are collectively termed “the phytomicrobiome”. The genomes of the phytomicrobiome expand the genetic repertoire of the plant. This association has led to the redefinition of Karl August Möbius' biocenosis (metaorganisms comprising the macroscopic host and its synergistic interdependence with microbes) concept into the holobiont (an individual host and its microbial community) concept (Theis et al., 2016). The holobiont collective genome is the hologenome, the evolutionary unit; the phytomicrobiome is much more flexible than the plant genome and more readily modified than the hologenome (Nogales et al., 2016). Plant-phytomicrobiome signaling It is becoming clear that plants exert control over the composition of their phytomicrobiome (Smith et al.). This is reviewed extensively in the recent Frontiers in Plant Science Research Topic “Signaling in the Phytomicrobiome.” Some of the regulatory activity by the plant is through availability of metabolites, but it is also increasingly evident that signals (exo-hormones or hormones of the holobiont) are being exchanged between the plant and members of its phytomicrobiome. Activities within the phytomicrobiome are also regulated through signaling, for instance through quorum sensing (Hartmann et al., 2014; Sitaraman; Smith et al.; Smith et al.), and other less well characterized signaling systems (e.g., Hagai et al., 2014). Members of the phytomicrobiome can assist plant growth in a range of ways (Smith et al.). For instance, establishment of a specific phytomicrobiome on plants, such as willows, can allow them to better tolerate soil contamination, and so allow them to play a more effective role in phytoremediation (Bell et al., 2015; Yergeau et al., 2015). Some soil nutrients are relatively immobile (e.g., phosphorus and zinc) and some microbes, such as arbuscular mycorrhizal fungi (AMF), facilitate uptake of these nutrients by increasing effective root surface area; other microbes use chelators and other molecular interventions to help mobilize plant nutrients. Another key role of the phytomicrobiome is atmospheric nitrogen fixation. Indeed, nitrogen is the plant nutrient required in the greatest amounts; it is quite mobile in soils and it can become rapidly depleted. The best understood example of signaling between a plant and elements of the phytomicrobiome occurs between leguminous plants and associated nitrogen-fixing rhizobia (Lira et al.; Nelson and Sadowsky; Smith et al.; Tóth and Stacey). Isoflavonoids secreted by plant roots guide rhizobial cells to the roots and activate key genes within the rhizobial cells, including the genes encoding production of lipo-chitooligosaccharides (LCOs) that signal back to the plant. Each legume species produces its own characteristic suite of isoflavonoids and it is generally the case that only the correct rhizobia respond to these. In a similar way, each type of rhizobia produces distinct LCOs, to which only the correct legume species responds (Smith et al.). The LCOs turn on a set of nodulation-related genes within the legume, initiating nodulation. In a few cases, the correct LCOs induce formation of completely differentiated nodules, in the absence of rhizobial cells. The presence of other phytomicrobiome members can enhance the nodulation process (Maymon et al.), although the mechanism is not understood. LCOs also serve as signals in the mycorrhizal relationship, suggesting that this is an ancient signaling system. However, the plant-to-mycorrhizal fungi signal is distinct from the plant-to-rhizobia signal, being strigolactone (Smith et al.), not an LCO and more related to the homoserine lactone used in quorum sensing among bacterial populations. Interestingly, rhizobia can also produce the plant growth promoting compound lumichrome, another phytomicrobome signal (Dakora et al.). Manipulating the phytomicrobiome A better understanding of plant-microbiome signaling could help find novel ways to manipulate the microbiome to improve the plant holobiont's nutrition and resistance to stress. For instance, we have learned that the correct isoflavonoids can be added to rhizobial inoculants, to activate the nodulation genes prior to application onto plants (Smith et al.). This can overcome environmental stresses disrupting signal exchange and enhance the establishment of the nitrogen-fixing symbiosis. We have also learned that LCOs can stimulate plant growth directly, particularly under stressful conditions (Smith et al.; Subramanian et al., 2016a,b). Interestingly, it has been shown that jasmonate, a plant hormone which regulates plant responses to stressful conditions, can be excreted from plant roots and can activate genes that produce LCOs in some rhizobia; this has been shown to ameliorate plant response to stress (Smith et al.). Commercial products based on these understandings are now available for application to a range of crops (Smith et al.). When one isolates bacteria from plant roots, Bacillus species are generally present. Recently, a strain of Bacillus which enhances plant growth under a range of conditions was isolated (Subramanian and Smith). This microbe was found to produce a small protein (thuricin 17) that, like the LCOs, stimulates plant growth at very low concentrations, and particularly when the plants are stressed. This protein is a bacteriocin that has a dual action by removing closely related competitors from the niche space, and promoting plant growth, thus enlarging the niche space, for the producing strain (Subramanian and Smith). It is clear that the role of the phytomicrobiome is large, well developed and well-orchestrated. It is also clear that there is considerable potential in managing this system (Smith et al.; Quiza et al.) and that the use of “biologicals” will develop during the twenty first century and play as large a role as agro-chemistry did in the twentieth century. Biologicals can be deployed to enhance plant pathogen resistance (Ravichandran et al.). They can be used to enhance crop productivity, to meet the expanding demands for plant material as food, fiber and fuel. They can assist crop plants in dealing with the more frequent and more extreme episodes of stress that will occur as climate change conditions continue to develop. The path is clear and we have started down it; there is a considerable distance remaining. Author contributions DS was the overall editor of the theme volume. EY and VG were junior editors of the theme volume and contributed to the writing of this editorial. Funding Funding was provided for basic and applied research through the Natural Sciences and Engineering Research Council of Canada (grant number RGPIN-2015-06328) and from the Canadian Networks of Centres of Excellence (grant number G234970). Conflict of interest statement The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Bacterial quorum sensing compounds are important modulators of microbe-plant interactions

          Plant—microbiome interactions in the light of the holobiontic concept Higher organisms evolved in the omnipresence of microbes, which could be of pathogenic or symbiotic nature. A framework of response patterns evolved which is known as innate immunity. A major part of this response is the recognition of microbial-associated molecular patterns (MAMP) such as chitin or lipochitooligosaccharides, peptidoglycan, lipopolysaccharides or flagellum structures, and the initiation of efficient plant defence reactions (Janeway and Medzhitov, 2002; Jones and Dangl, 2006). However, there are many plant-associated endophytic bacteria known, which are living within plants without triggering persistent and apparent defence responses or visibly do not harm the plant. In some cases, even a stimulation of plant growth due to the presence of specific players within the plant microbiome was reported (Turner et al., 2013). It is now generally accepted, that plant performance and activities can only be characterized and understood completely, if the “holobiont,” the plant plus the intimately associated microbiota, is considered (Zilber-Rosenberg and Rosenberg, 2008). The evolutionary advantage of an integrated holobiontic system is characterized by a much better adaptability and flexibility towards rapidly changing adverse environmental conditions. It is still mostly unknown, which particular plant genetic loci are controlling the interactions with the plant microbiome and which signals are steering this cooperativity. Mutualistic microbes are able to overcome or short-circuit plant defence responses to enable successful colonization of the host (Zamioudis and Pieterse, 2012; Alqueres et al., 2013). Beneficial associations with microbes other than mycorhiza or Rhizobia are also controlled by systemically regulated or autoregulated processes on top of the basic innate immunity response. The induction of systemic immunity responses like ISR (induced systemic resistance) by some beneficial rhizosphere bacteria or the SAR (systemic acquired resistance) response provoked by pathogens are results of multiple response cascades employed by the plant host to respond to microbial and other environmental interactions. However, the entire response network is by far not yet revealed. For example, bacteria-induced plant responses resulting in improved resistance towards pathogens can also be due to the perception of secondary metabolites, like the surfactin lipopeptide, produced by certain biocontrol Bacilli (Garcia-Gutiérrez et al., 2013) or volatile compounds of plant-associated microbes (Yi et al., 2010). The biocontrol activity of microbial inoculants is probably due to multiple effects of their secondary metabolites to achieve direct inhibition of the pathogenic counterpart as well as an increase of systemic resistance of the plant host. Bacterial quorum sensing molecules like N-acyl homoserine lactones modulate plant responses toward contact with bacteria It is hypothesized, that eukaryotic organisms developed ways to sense microbes in addition to the recognition of their MAMPs by their diffusible small molecules. A very ancient and basic feature of unicellular bacteria is their way of environmental sensing and social communication. In many Gram-negative bacteria the synthesis of autoinducers of the N-acyl-homoserine lactone (AHL) type is tightly regulated in response to cell density or the cell “quorum” (Eberl, 1999). These metabolites are released into the cellular environment to sense the quality of the ecological niche in terms of diffusion space and the density and distribution of their own population. This environmental sensing mechanism helps to adapt the regulation of their gene expression to the given conditions in their habitat and thus optimizes the fitness of the population. Therefore, the generally known term “quorum sensing” (QS) was supplemented by the more broadly defined concept of “efficiency sensing” (Hense et al., 2007). Since this optimization of in situ gene expression is of very basic importance, autoinducer QS-molecules are widespread among bacteria and have quite different molecular structures. AHL are common in Gram-negative bacteria, while cyclic peptides as QS-signals are only to be found in Gram-positive bacteria. The detailed structure of the AHL-molecules can vary; the acyl side chain consists of 4–14 carbon atoms and may also contain double bonds. The C3-atom can be hydroxylated or oxidized to a carbonyl-carbon; thus, considerable information and quite different physicochemical properties can be present within these different AHL-structures. As is outlined below, also plants have obviously learned during their evolution to respond to these QS compounds in different specific ways. We speculate, that QS-compounds are early signals indicating that pathogens are in the surroundings to gather themselves for attack or that mutualists are about to interact with roots. The first demonstration of specific responses of a plant to bacterial AHLs was demonstrated for the legumes Phaseolus vulgaris (Joseph and Phillips, 2003) and Medicago truncatula (Mathesius et al., 2003) (Table 1). AHLs from symbiotic (Sinorhizobium meliloti) or pathogenic (Pseudomonas aeruginosa) bacteria provoked at concentrations as low as nano- to micromolar significant changes in the accumulation of over 150 proteins. Auxin-responsive and flavonoid synthesis proteins were induced and also a secretion of plant metabolites that mimic QS compounds were found, which may have the potential to disrupt QS signaling by associated bacteria. In tomato plants, a specific induction of systemic resistance proteins after inoculation of the roots with C4- and C6-side chain AHL-producing Serratia liquefaciens MG1 was discovered independently (Hartmann et al., 2004; Schuhegger et al., 2006). The fungal leaf pathogen Alternaria alternata was much less effective, when S. liquefaciens MG 1 wild type had been inoculated to roots of tomato plants as compared to the AHL-negative mutant. It could be shown, that salicylic acid was increased as well as SA- and ethylene-dependent defence genes (i.e., PR1a) in MG1-inoculated plants. Furthermore, Serratia plymuthica HRO-C48, producing C4-/C6- and OHC4-/OHC6-homoserine lactones, is able to induce ISR-like systemic protection of bean and tomato plants against the fungal leaf pathogen Botrytis cinnera; this response was greatly reduced with mutants impaired in AHL-production (Liu et al., 2007; Pang et al., 2009). In contrast, Arabidopsis thaliana responds to short (C4- and C6-) N-acyl AHL-compounds in a different manner: C4- and C6- homoserine lactones alter the expression of selected hormonal regulated genes which results in changes of the plant's hormone content, in particular an increased auxin/cytokinin ratio (von Rad et al., 2008). However, no systemic resistance response was found to be induced in A. thaliana when roots were stimulated with short side-chain AHLs. Ortíz-Castro et al. (2008) found that C10-homoserine lactone elicited developmental changes in the root system in Arabidopsis plants by altering the expression of cell division and differentiation-related genes. Furthermore, Liu et al. (2012) and Jin et al. (2012) demonstrated that the root stimulatory effect of C6- and C8- homoserine lactones in Arabidopsis plants is mediated through the G-protein coupled receptor encoded by AtGPA1. In mung bean, oxoC10-homoserine lactone activates auxin-induced adventitious root formation via H2O2- and NO-dependent cyclic GMP signaling (Bai et al., 2012). On the other hand, N-acyl-AHLs with C12- and C14- side chains induce systemic resistance to the obligate biotrophic fungus Golovinomyces orontii in A. thaliana and to Blumeria graminis f. sp. hordei in barley (Hordeum vulgare) (Schikora et al., 2011). This response is mediated through altered activation of AtMPK6. The mitogen-activated protein kinases AtMPK3 and AtMPK6 were stronger activated by the model elicitor flg22 in the presence of C12- or C14-AHL compounds which resulted in a higher expression of the defence-related transcription factors WRKY26 and WRKY29 as well as the PR1 gene (Schikora et al., 2011). Thus, AHLs with short and medium side chain lengths induce developmental effects on root architecture, while long side chain AHLs induce systemic resistance in A. thaliana (Schenk et al., 2012). Furthermore, it was shown, that better water soluble short side chain AHL-compounds are actively taken up into plant roots and transported along the roots into the shoot; in contrast, the lipophilic long acyl side chain AHLs are not transported in barley and A. thaliana. (Götz et al., 2007; von Rad et al., 2008; Sieper et al., 2014). However, no uptake was detected in the legume yam bean (Pachyrhizus erosus (L.) Urban) (Götz et al., 2007). The latter finding corroborates the report of Delalande et al. (2005) that legumes like Lotus corniculatus produce lactonases which degrade AHLs and prevent their uptake and transport. In barley, it could further be demonstrated that C8- and C10-AHLs are taken up in a cell energy dependent manner by ABC-transporters into the root and transported via the central cylinder into the shoot (Sieper et al., 2014). Table 1 Recent findings of direct AHL impact on different plants. AHL type Plant reaction Plant species References Short chain length Increased transpiration, stomatal conductance Phaseolus vulgaris Joseph and Phillips, 2003 C6 Primary root elongation A. thaliana von Rad et al., 2008 C6 Upregulation of metabolism, transport and transcriptional regulation A. thaliana von Rad et al., 2008 C6 (Serratia liquefaciens) Upregulation of defense genes Lycopersicon esculentum Schuhegger et al., 2006 C6, C8, C10 Lactonase induction Pachyrhizus erosus Götz et al., 2007 Oxo-C6, oxo-C8 G-protein coupled receptors for root growth A. thaliana Jin et al., 2012; Liu et al., 2012 3-oxo-C6 (Serratia plymuthica) Triggering plant immunity Cucumis sativa Pang et al., 2009 Lycopersicon esculentum C6, C8, C10 Root and shoot growth Hordeum vulgare Götz et al., 2007 3-O-C10 Adventitious root formation Vigna radiata Bai et al., 2012 C10 Lateral root formation A. thaliana Bai et al., 2012 C12 Root hair development A. thaliana Ortíz-Castro et al., 2008 3-oxo-C12 from P. aeruginosa Defense and stress management genes, phytohormones, and metabolic regulation Medicago truncatula Mathesius et al., 2003 oxo-C12 Resistance induction A. thaliana Schikora et al., 2011 oxo-C14 Systemic resistance against Golovinomyces orontii A. thaliana Schikora et al., 2011 oxo-C14 Systemic resistance against Blumeria graminis Hordeum vulgare Schikora et al., 2011 3-oxo-C16 from (Sinorhizobium meliloti) Defense and stress management genes, phytohormones and metabolic regulation Medicago truncatula Mathesius et al., 2003 Interestingly, several plants have been demonstrated to produce AHL-mimic substances or to develop other activities influencing QS of plant associated bacteria (Gao et al., 2003; Bauer and Mathesius, 2004). Flavonoids released by legumes increase the expression of AHL synthesis genes in Rhizobia (Pérez-Montano et al., 2011). Indole acetic acid and cytokinin biosynthesis of Gypsophila was shown to influence QS, type III secretion system and gall formation activity by Pantoea plantarum (Chalupowicz et al., 2009). On the other hand, tobacco plants have been engineered to produce short- and long-side chain AHL-compounds which could be detected in substantial amounts at leaf and root surfaces as well as in soil (Scott et al., 2006). Constitutive expression of QS genes in transgenic tobacco plants leads to alteration in induced systemic resistance elicited by the rhizobacterium Serratia marcescens 90–166 (Ryu et al., 2013). Furthermore, transgenic tomato plants engineered to produce different AHL-compounds were demonstrated to alter the activity of plant growth promoting rhizobacteria and resulted, e.g., in increased salt tolerance (Barriuso et al., 2008). We hypothesize, that QS in a plant-microbe holobiont system should be regarded in a bidirectional way with influences from the plant and the microbial partners. Uptake of AHL-compounds and specific perception of AHLs in animal cells were also studied intensively in recent years (Teplitski et al., 2011; Hartmann and Schikora, 2012). 3-oxo-C12-homoserine lactone (C12-AHL), the major AHL-compound of Pseudomonas aeruginosa, was shown to selectively impair the regulation of the nuclear transcription factor NF-κ B which controls innate immune responses in mammalian cells (Kravchenko et al., 2008). C12-AHL also impaired human dendritic cell functions required for priming of T-cells (Bernatowicz et al., submitted). Since the response to AHL-compounds in mammalian systems is complicated due to the interferences with the adaptive immune system, plants provide an ideal model for the detailed interaction studies of basic innate immune responses and developmental processes with N-acylhomoserine lactones as modifying bacterial effector molecules. Conflict of interest statement The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Transplanting Soil Microbiomes Leads to Lasting Effects on Willow Growth, but not on the Rhizosphere Microbiome

            Plants interact closely with microbes, which are partly responsible for plant growth, health, and adaptation to stressful environments. Engineering the plant-associated microbiome could improve plant survival and performance in stressful environments such as contaminated soils. Here, willow cuttings were planted into highly petroleum-contaminated soils that had been gamma-irradiated and subjected to one of four treatments: inoculation with rhizosphere soil from a willow that grew well (LA) or sub-optimally (SM) in highly contaminated soils or with bulk soil in which the planted willow had died (DE) or no inoculation (CO). Samples were taken from the starting inoculum, at the beginning of the experiment (T0) and after 100 days of growth (TF). Short hypervariable regions of archaeal/bacterial 16S rRNA genes and the fungal ITS region were amplified from soil DNA extracts and sequenced on the Illumina MiSeq. Willow growth was monitored throughout the experiment, and plant biomass was measured at TF. CO willows were significantly smaller throughout the experiment, while DE willows were the largest at TF. Microbiomes of different treatments were divergent at T0, but for most samples, had converged on highly similar communities by TF. Willow biomass was more strongly linked to overall microbial community structure at T0 than to microbial community structure at TF, and the relative abundance of many genera at T0 was significantly correlated to final willow root and shoot biomass. Although microbial communities had mostly converged at TF, lasting differences in willow growth were observed, probably linked to differences in T0 microbial communities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Surface-motility induction, attraction and hitchhiking between bacterial species promote dispersal on solid surfaces.

              The ability to move on solid surfaces provides ecological advantages for bacteria, yet many bacterial species lack this trait. We found that Xanthomonas spp. overcome this limitation by making use of proficient motile bacteria in their vicinity. Using X. perforans and Paenibacillus vortex as models, we show that X. perforans induces surface motility, attracts proficient motile bacteria and 'rides' them for dispersal. In addition, X. perforans was able to restore surface motility of strains that lost this mode of motility under multiple growth cycles in the lab. The described interaction occurred both on agar plates and tomato leaves and was observed between several xanthomonads and motile bacterial species. Thus, suggesting that this motility induction and hitchhiking strategy might be widespread and ecologically important. This study provides an example as to how bacteria can rely on the abilities of their neighboring species for their own benefit, signifying the importance of a communal organization for fitness.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                24 April 2017
                2017
                : 8
                : 611
                Affiliations
                [1] 1Plant Science Department, McGill University Ste. Anne de Bellevue, QC, Canada
                [2] 2Centre INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Université du Québec Laval, QC, Canada
                Author notes

                Edited by: Brigitte Mauch-Mani, University of Neuchâtel, Switzerland

                Reviewed by: Brigitte Mauch-Mani, University of Neuchâtel, Switzerland; Robin K. Cameron, McMaster University, Canada

                *Correspondence: Donald L. Smith donald.smith@ 123456mcgill.ca

                This article was submitted to Plant Microbe Interactions, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2017.00611
                5401874
                28484479
                1c4f11e5-f61c-4096-ab03-70658e3e112a
                Copyright © 2017 Smith, Gravel and Yergeau.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 October 2016
                : 04 April 2017
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 8, Pages: 3, Words: 1797
                Funding
                Funded by: Natural Sciences and Engineering Research Council of Canada 10.13039/501100000038
                Award ID: G228175 NSERC RGPIN-2015-06328
                Categories
                Plant Science
                Editorial

                Plant science & Botany
                molecular signals,plant growth promoting rhizobacteria,phytomicrobiome,holobiont,crop

                Comments

                Comment on this article